版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則()A. B. C. D.2.設(shè)是雙曲線的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn),使(為坐標(biāo)原點(diǎn)),且,則雙曲線的離心率為()A. B. C. D.3.已知,,,則的最小值為()A. B. C. D.4.我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為()A. B. C. D.5.已知,是兩條不重合的直線,,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則6.已知三棱柱()A. B. C. D.7.已知,,若,則實(shí)數(shù)的值是()A.-1 B.7 C.1 D.1或78.某公園新購(gòu)進(jìn)盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.9.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.10.為虛數(shù)單位,則的虛部為()A. B. C. D.11.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.為激發(fā)學(xué)生團(tuán)結(jié)協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個(gè)班進(jìn)行班級(jí)間的拔河比賽.每?jī)砂嘀g只比賽1場(chǎng),目前(—)班已賽了4場(chǎng),(二)班已賽了3場(chǎng),(三)班已賽了2場(chǎng),(四)班已賽了1場(chǎng).則目前(五)班已經(jīng)參加比賽的場(chǎng)次為_(kāi)_________.14.某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,則該市的任意位申請(qǐng)人中,恰好有人申請(qǐng)小區(qū)房源的概率是______.(用數(shù)字作答)15.,則f(f(2))的值為_(kāi)___________.16.設(shè)定義域?yàn)榈暮瘮?shù)滿足,則不等式的解集為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角所對(duì)的邊分別為,,的面積.(1)求角C;(2)求周長(zhǎng)的取值范圍.18.(12分)2019年12月以來(lái),湖北省武漢市持續(xù)開(kāi)展流感及相關(guān)疾病監(jiān)測(cè),發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡(jiǎn)稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.為了預(yù)測(cè)在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問(wèn)題:時(shí)間1月25日1月26日1月27日1月28日1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù)19752744451559747111(?。┊?dāng)1月25日至1月27日這3天的誤差(模型預(yù)測(cè)數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對(duì)值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請(qǐng)判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國(guó)人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測(cè)數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請(qǐng)判斷預(yù)防措施是否有效?附:對(duì)于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850719.(12分)等差數(shù)列中,,,分別是下表第一、二、三行中的某一個(gè)數(shù),且其中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請(qǐng)選擇一個(gè)可能的組合,并求數(shù)列的通項(xiàng)公式;(2)記(1)中您選擇的的前項(xiàng)和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請(qǐng)求出的值;若沒(méi)有,請(qǐng)說(shuō)明理由.20.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.21.(12分)在中,、、的對(duì)應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點(diǎn),求的長(zhǎng).22.(10分)已知橢圓的右焦點(diǎn)為,直線被稱作為橢圓的一條準(zhǔn)線,點(diǎn)在橢圓上(異于橢圓左、右頂點(diǎn)),過(guò)點(diǎn)作直線與橢圓相切,且與直線相交于點(diǎn).(1)求證:.(2)若點(diǎn)在軸的上方,當(dāng)?shù)拿娣e最小時(shí),求直線的斜率.附:多項(xiàng)式因式分解公式:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
結(jié)合指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點(diǎn)睛】本題考查了幾個(gè)數(shù)的大小比較,考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.2.D【解析】
利用向量運(yùn)算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點(diǎn),則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點(diǎn)睛】本題綜合考查向量運(yùn)算與雙曲線的相關(guān)性質(zhì),難度一般.3.B【解析】,選B4.D【解析】
利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時(shí)期.從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為.故選D.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹(shù)狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫(xiě)出:先,….,再,…..依次….…這樣才能避免多寫(xiě)、漏寫(xiě)現(xiàn)象的發(fā)生.5.D【解析】
根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項(xiàng)A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,,,由線面平行的判定定理,有,故B正確;選項(xiàng)C:若,,,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,,有可能,故D不正確.故選:D【點(diǎn)睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.6.C【解析】因?yàn)橹比庵?,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過(guò)底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對(duì)角線長(zhǎng)即為球直徑,所以2R==13,即R=7.C【解析】
根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,化簡(jiǎn)即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運(yùn)算,代入化簡(jiǎn)可得.∴解得.故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.8.B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開(kāi)有,扣除郁金香在兩邊有,即可求出結(jié)論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個(gè)位置中有種,根據(jù)分步乘法計(jì)數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個(gè)位置中有,根據(jù)分步計(jì)數(shù)原理有,所以共有種.故選:B.【點(diǎn)睛】本題考查排列應(yīng)用問(wèn)題、分步乘法計(jì)數(shù)原理,不相鄰問(wèn)題插空法是解題的關(guān)鍵,屬于中檔題.9.C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.10.C【解析】
利用復(fù)數(shù)的運(yùn)算法則計(jì)算即可.【詳解】,故虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯(cuò)題.11.B【解析】
函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時(shí)的值,然后根據(jù)變化時(shí),函數(shù)的變化趨勢(shì),從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠(yuǎn)在的上方,設(shè)與的切點(diǎn),則,解得,易知越小,圖象越靠上,所以.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.12.B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問(wèn)題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來(lái)求解,考查理解能力和計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
根據(jù)比賽場(chǎng)次,分析,畫(huà)出圖象,計(jì)算結(jié)果.【詳解】畫(huà)圖所示,可知目前(五)班已經(jīng)賽了2場(chǎng).故答案為:2【點(diǎn)睛】本題考查推理,計(jì)數(shù)原理的圖形表示,意在考查數(shù)形結(jié)合分析問(wèn)題的能力,屬于基礎(chǔ)題型.14.【解析】
基本事件總數(shù),恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù),由此能求出該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,該市的任意5位申請(qǐng)人中,基本事件總數(shù),該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù):,該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率是.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.15.1【解析】
先求f(1),再根據(jù)f(1)值所在區(qū)間求f(f(1)).【詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【點(diǎn)睛】本題考查分段函數(shù)求值,考查對(duì)應(yīng)性以及基本求解能力.16.【解析】
根據(jù)條件構(gòu)造函數(shù)F(x),求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】設(shè)F(x),則F′(x),∵,∴F′(x)>0,即函數(shù)F(x)在定義域上單調(diào)遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點(diǎn)睛】本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)條件構(gòu)造函數(shù)是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由可得到,代入,結(jié)合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結(jié)合正弦定理可得到,利用,,可得到,進(jìn)而可求出周長(zhǎng)的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長(zhǎng)為.∵,∴,∴,∴的周長(zhǎng)的取值范圍為.【點(diǎn)睛】本題考查了正弦定理、余弦定理在解三角形中的運(yùn)用,考查了三角形的面積公式,考查了學(xué)生分析問(wèn)題、解決問(wèn)題的能力,屬于基礎(chǔ)題.18.(1)適宜(2)(3)(?。┗貧w方程可靠(ⅱ)防護(hù)措施有效【解析】
(1)根據(jù)散點(diǎn)圖即可判斷出結(jié)果.(2)設(shè),則,求出,再由回歸方程過(guò)樣本中心點(diǎn)求出,即可求出回歸方程.(3)(?。├帽碇袛?shù)據(jù),計(jì)算出誤差即可判斷回歸方程可靠;(ⅱ)當(dāng)時(shí),,與真實(shí)值作比較即可判斷有效.【詳解】(1)根據(jù)散點(diǎn)圖可知:適宜作為累計(jì)確診人數(shù)與時(shí)間變量的回歸方程類型;(2)設(shè),則,,,;(3)(?。r(shí),,,當(dāng)時(shí),,,當(dāng)時(shí),,,所以(2)的回歸方程可靠:(ⅱ)當(dāng)時(shí),,10150遠(yuǎn)大于7111,所以防護(hù)措施有效.【點(diǎn)睛】本題考查了函數(shù)模型的應(yīng)用,在求非線性回歸方程時(shí),現(xiàn)將非線性的化為線性的,考查了誤差的計(jì)算以及用函數(shù)模型分析數(shù)據(jù),屬于基礎(chǔ)題.19.(1)見(jiàn)解析,或;(2)存在,.【解析】
(1)滿足題意有兩種組合:①,,,②,,,分別計(jì)算即可;(2)由(1)分別討論兩種情況,假設(shè)存在正整數(shù),使得,,成等比數(shù)列,即,解方程是否存在正整數(shù)解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時(shí)等差數(shù)列,,,所以其通項(xiàng)公式為.②,,,此時(shí)等差數(shù)列,,,所以其通項(xiàng)公式為.(2)若選擇①,.則.若,,成等比數(shù)列,則,即,整理,得,即,此方程無(wú)正整數(shù)解,故不存在正整數(shù),使,,成等比數(shù)列.若選則②,,則,若,,成等比數(shù)列,則,即,整理得,因?yàn)闉檎麛?shù),所以.故存在正整數(shù),使,,成等比數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備抵押貸款協(xié)議范本
- 監(jiān)理責(zé)任聲明
- 弘揚(yáng)專業(yè)的決心
- 個(gè)人購(gòu)車(chē)貸款居間服務(wù)合同
- 計(jì)算機(jī)軟件采購(gòu)協(xié)議格式
- 帝爾婚慶服務(wù)合同中的保密條款
- 解除采購(gòu)合同安排
- 質(zhì)量保證書(shū)品質(zhì)第一客戶至上
- 設(shè)備采購(gòu)合同范文
- 商業(yè)物業(yè)保安合作協(xié)議
- 2023-2024學(xué)年廣東省湛江市赤坎區(qū)某中學(xué)七年級(jí)上學(xué)期期末數(shù)學(xué)試卷及參考答案
- (完整)蘇教版小學(xué)五年級(jí)上冊(cè)數(shù)學(xué)口算練習(xí)題
- 北京市西城區(qū)2022-2023學(xué)年高三上學(xué)期期末生物試題 附解析
- 2024年云南省中考物理試題含答案
- GB/T 28569-2024電動(dòng)汽車(chē)交流充電樁電能計(jì)量
- 政府采購(gòu)評(píng)審專家考試題及答案
- 2024新能源光伏電站運(yùn)行規(guī)程
- 屋頂氣窗施工方案
- 數(shù)字化轉(zhuǎn)型與年度工作目標(biāo)計(jì)劃
- 兒童游樂(lè)場(chǎng)安全防范與應(yīng)急處理預(yù)案
- 廣東廣業(yè)投資集團(tuán)限公司社會(huì)公開(kāi)招聘高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
評(píng)論
0/150
提交評(píng)論