版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
熱點(diǎn)2-4導(dǎo)數(shù)的切線問(wèn)題導(dǎo)數(shù)的切線問(wèn)題一直是高考數(shù)學(xué)的中重點(diǎn)內(nèi)容,從近幾年的高考情況來(lái)看,今年高考依舊會(huì)涉及導(dǎo)數(shù)的運(yùn)算及幾何意義,以選擇填空題的形式考察導(dǎo)數(shù)的意義、求曲線的切線方程,導(dǎo)數(shù)的幾何意義也可能會(huì)作為解答題中的一問(wèn)進(jìn)行考查,試題難度屬中低檔。【題型1“在”點(diǎn)P處的切線問(wèn)題】滿分技巧求曲線“在”某點(diǎn)處的切線方程步驟第一步(求斜率):求出曲線在點(diǎn)處切線的斜率第二步(寫(xiě)方程):用點(diǎn)斜式第三步(變形式):將點(diǎn)斜式變成一般式?!纠?】(2023·廣東肇慶·高三??茧A段練習(xí))曲線SKIPIF1<0在SKIPIF1<0處的切線方程為.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,故曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0【變式1-1】(2023·河南·信陽(yáng)高中校聯(lián)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,則曲線SKIPIF1<0在SKIPIF1<0處的切線方程為.【答案】SKIPIF1<0【解析】SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,故所求切線方程為SKIPIF1<0,即SKIPIF1<0.【變式1-2】(2023·四川雅安·統(tǒng)考一模)若點(diǎn)SKIPIF1<0是函數(shù)SKIPIF1<0圖象上任意一點(diǎn),直線SKIPIF1<0為點(diǎn)SKIPIF1<0處的切線,則直線SKIPIF1<0傾斜角的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】函數(shù)SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,求導(dǎo)得SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,因此函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線SKIPIF1<0斜率SKIPIF1<0,顯然直線SKIPIF1<0的傾斜角為鈍角,所以直線SKIPIF1<0的傾斜角的取值范圍是SKIPIF1<0.故選:C【變式1-3】(2023·陜西寶雞·校聯(lián)考模擬預(yù)測(cè))已知曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與曲線SKIPIF1<0相切,則SKIPIF1<0.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,則SKIPIF1<0,所以曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,又切線SKIPIF1<0與曲線SKIPIF1<0相切,設(shè)切點(diǎn)為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以切線斜率為SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.【題型2“過(guò)”點(diǎn)P處的切線問(wèn)題】滿分技巧求曲線“過(guò)”某點(diǎn)處的切線方程步驟第一步:設(shè)切點(diǎn)為;第二步:求出函數(shù)在點(diǎn)處的導(dǎo)數(shù);第三步:利用Q在曲線上和,解出及;第四步:根據(jù)直線的點(diǎn)斜式方程,得切線方程為.【例2】(2023·全國(guó)·模擬預(yù)測(cè))過(guò)原點(diǎn)可以作曲線SKIPIF1<0的兩條切線,則這兩條切線方程為()A.SKIPIF1<0和SKIPIF1<0B.SKIPIF1<0和SKIPIF1<0C.SKIPIF1<0和SKIPIF1<0D.SKIPIF1<0和SKIPIF1<0【答案】A【解析】由SKIPIF1<0,得SKIPIF1<0為偶函數(shù),故過(guò)原點(diǎn)作的兩條切線一定關(guān)于y軸對(duì)稱.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),所以切線斜率為1,從而切線方程為SKIPIF1<0.由對(duì)稱性知:另一條切線方程為SKIPIF1<0.故選:A【變式2-1】(2023·河北保定·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,且SKIPIF1<0為曲線SKIPIF1<0的一條切線,則SKIPIF1<0.【答案】2【解析】設(shè)SKIPIF1<0與曲線SKIPIF1<0相切的切點(diǎn)SKIPIF1<0,由SKIPIF1<0求導(dǎo)得SKIPIF1<0,切線斜率為SKIPIF1<0,因此切線方程為SKIPIF1<0,依題意,SKIPIF1<0,且SKIPIF1<0,聯(lián)立消去SKIPIF1<0得SKIPIF1<0,令函數(shù)SKIPIF1<0,SKIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.【變式2-2】(2023·河南周口·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0,直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0.【答案】2【解析】直線SKIPIF1<0與曲線SKIPIF1<0相切,所以SKIPIF1<0,所以切點(diǎn)為SKIPIF1<0,切點(diǎn)在直線SKIPIF1<0上,可得SKIPIF1<0.【變式2-3】(2023·陜西·校聯(lián)考模擬預(yù)測(cè))函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0相切,則以下錯(cuò)誤的是()A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0與直線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0①,所以切點(diǎn)為SKIPIF1<0,而斜率為SKIPIF1<0,所以切線方程為SKIPIF1<0,則SKIPIF1<0②.由①②得SKIPIF1<0,SKIPIF1<0,C選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,A選項(xiàng)正確.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,B選項(xiàng)正確.故選:C【題型3切線的平行、垂直問(wèn)題】滿分技巧結(jié)合平行垂直的斜率關(guān)系解決與切線平行、垂直的問(wèn)題?!纠?】(2023·廣東茂名·統(tǒng)考二模)已知曲線SKIPIF1<0在SKIPIF1<0處的切線與SKIPIF1<0在SKIPIF1<0處的切線平行,則SKIPIF1<0的值為.【答案】SKIPIF1<0【解析】SKIPIF1<0,SKIPIF1<0由題意可知,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.【變式3-1】(2023·青?!ばB?lián)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則SKIPIF1<0()A.SKIPIF1<0B.1C.SKIPIF1<0D.2【答案】A【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)榍芯€與SKIPIF1<0垂直,所以SKIPIF1<0,所以SKIPIF1<0,故選:A.【變式3-2】(2023·云南昆明·高三昆明一中??茧A段練習(xí))若曲線SKIPIF1<0存在垂直于SKIPIF1<0軸的切線,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由題意,SKIPIF1<0在SKIPIF1<0有解,則SKIPIF1<0在SKIPIF1<0有解,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)增,所以SKIPIF1<0,則SKIPIF1<0,故選:C.【變式3-3】(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行,求出這條切線的方程.【答案】SKIPIF1<0【解析】∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0.由已知SKIPIF1<0,∴SKIPIF1<0得SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0,∴曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0化簡(jiǎn)得:SKIPIF1<0.故所求切線方程為:SKIPIF1<0.【題型4切線的條數(shù)問(wèn)題】滿分技巧已知SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0,可作曲線的SKIPIF1<0(SKIPIF1<0)條切線問(wèn)題第一步:設(shè)切點(diǎn)SKIPIF1<0第二步:計(jì)算切線斜率SKIPIF1<0;第三步:計(jì)算切線方程.根據(jù)直線的點(diǎn)斜式方程得到切線方程:SKIPIF1<0.第四步:將SKIPIF1<0代入切線方程,得:SKIPIF1<0,整理成關(guān)于SKIPIF1<0得分方程;第五步:題意已知能作幾條切線,關(guān)于SKIPIF1<0的方程就有幾個(gè)實(shí)數(shù)解;【例4】(2023·湖南·校聯(lián)考二模)若經(jīng)過(guò)點(diǎn)SKIPIF1<0可以且僅可以作曲線SKIPIF1<0的一條切線,則下列選項(xiàng)正確的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0或SKIPIF1<0【答案】D【解析】設(shè)切點(diǎn)SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,又因?yàn)榍芯€經(jīng)過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0有且僅有1個(gè)交點(diǎn),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0單調(diào)遞增,顯然SKIPIF1<0時(shí),SKIPIF1<0,于是符合題意;當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞增,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.綜上,SKIPIF1<0或SKIPIF1<0.故選:D【變式4-1】(2023·全國(guó)·模擬預(yù)測(cè))若曲線SKIPIF1<0有兩條過(guò)點(diǎn)SKIPIF1<0的切線,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】設(shè)切點(diǎn)為SKIPIF1<0,由已知得SKIPIF1<0,則切線斜率SKIPIF1<0,切線方程為SKIPIF1<0.∵直線過(guò)點(diǎn)SKIPIF1<0,∴SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.∵切線有2條,∴SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D【變式4-2】(2023·全國(guó)·模擬預(yù)測(cè))若曲線SKIPIF1<0有3條過(guò)坐標(biāo)原點(diǎn)的切線,則實(shí)數(shù)a的取值范圍為.【答案】SKIPIF1<0【解析】由題意得SKIPIF1<0,設(shè)過(guò)坐標(biāo)原點(diǎn)的直線與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,則SKIPIF1<0,且切線的斜率為SKIPIF1<0,所以切線方程為SKIPIF1<0,又切線過(guò)坐標(biāo)原點(diǎn),因此SKIPIF1<0,整理得SKIPIF1<0,設(shè)SKIPIF1<0,則“曲線SKIPIF1<0有3條過(guò)坐標(biāo)原點(diǎn)的切線”等價(jià)于“函數(shù)SKIPIF1<0有3個(gè)不同的零點(diǎn)”,SKIPIF1<0,當(dāng)x變化時(shí),SKIPIF1<0與SKIPIF1<0的變化情況如下表:xSKIPIF1<00SKIPIF1<01SKIPIF1<0SKIPIF1<0+0-0+SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.【變式4-3】(2023·廣東深圳·高三珠海市第一中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0的切線SKIPIF1<0,若SKIPIF1<0(SKIPIF1<0),則直線SKIPIF1<0的條數(shù)為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0,故SKIPIF1<0在R上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,故SKIPIF1<0上只有點(diǎn)SKIPIF1<0滿足SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故點(diǎn)SKIPIF1<0一定不在SKIPIF1<0上,且SKIPIF1<0一定為過(guò)SKIPIF1<0的一條切線,設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,則切線SKIPIF1<0的斜率為SKIPIF1<0,故切線方程為SKIPIF1<0,因?yàn)镾KIPIF1<0在切線上,故SKIPIF1<0,整理得SKIPIF1<0,由SKIPIF1<0可知,SKIPIF1<0恒成立,故SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,SKIPIF1<0只有1個(gè)根,即除SKIPIF1<0外,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0的切線還有一條,共2條.故選:C【題型5兩條曲線的公切線問(wèn)題】滿分技巧已知SKIPIF1<0和SKIPIF1<0存在SKIPIF1<0(SKIPIF1<0)條公切線問(wèn)題第一步:求公切線的斜率,設(shè)SKIPIF1<0的切點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0的切點(diǎn)SKIPIF1<0;第二步:求公切線的斜率SKIPIF1<0與SKIPIF1<0;第三步:寫(xiě)出并整理切線(1)SKIPIF1<0整理得:SKIPIF1<0(2)SKIPIF1<0整理得:SKIPIF1<0第四步:聯(lián)立已知條件SKIPIF1<0消去SKIPIF1<0得到關(guān)于SKIPIF1<0的方程,再分類變量,根據(jù)題意公切線條數(shù)求交點(diǎn)個(gè)數(shù);消去SKIPIF1<0得到關(guān)于SKIPIF1<0的方程再分類變量,根據(jù)題意公切線條數(shù)求交點(diǎn)個(gè)數(shù);【例5】(2023·湖北荊州·高三荊州中學(xué)??茧A段練習(xí))若曲線SKIPIF1<0與曲線SKIPIF1<0有公切線,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】設(shè)公切線與函數(shù)SKIPIF1<0切于點(diǎn)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以公切線的斜率為SKIPIF1<0,所以公切線方程為SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,設(shè)公切線與函數(shù)SKIPIF1<0切于點(diǎn)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則公切線的斜率為SKIPIF1<0,所以公切線方程為SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,所以SKIPIF1<0,消去SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,所以SKIPIF1<0,所以由題意得SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故選:A【變式5-1】(2023·廣東廣州·高三鐵一中學(xué)??茧A段練習(xí))若函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象存在公切線,則實(shí)數(shù)t的取值范圍為.【答案】SKIPIF1<0【解析】由題意得SKIPIF1<0,SKIPIF1<0,設(shè)公切線與曲線SKIPIF1<0切于點(diǎn)SKIPIF1<0,與曲線SKIPIF1<0切于點(diǎn)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象存在公切線SKIPIF1<0,符合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,故SKIPIF1<0,綜合得實(shí)數(shù)t的取值范圍為SKIPIF1<0.【變式5-2】(2023·遼寧營(yíng)口·高三??茧A段練習(xí))已知直線SKIPIF1<0與SKIPIF1<0是曲線SKIPIF1<0的兩條切線,則SKIPIF1<0.【答案】SKIPIF1<0【解析】由已知得,曲線的切線過(guò)SKIPIF1<0,且SKIPIF1<0,曲線為SKIPIF1<0,設(shè)SKIPIF1<0,直線SKIPIF1<0在曲線上的切點(diǎn)為SKIPIF1<0,SKIPIF1<0,切線:SKIPIF1<0,又切線過(guò)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,同理取SKIPIF1<0,曲線為SKIPIF1<0,設(shè)SKIPIF1<0,直線SKIPIF1<0在曲線上的切點(diǎn)為SKIPIF1<0,SKIPIF1<0,切線:SKIPIF1<0,又切線過(guò)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.【變式5-3】(2023·江西·高三校聯(lián)考階段練習(xí))若函數(shù)SKIPIF1<0與SKIPIF1<0,SKIPIF1<0有公共點(diǎn),且在公共點(diǎn)處的切線方程相同,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】SKIPIF1<0,SKIPIF1<0.設(shè)曲線SKIPIF1<0與SKIPIF1<0的公共點(diǎn)為SKIPIF1<0,兩者在公共點(diǎn)處的切線方程相同,因此SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以舍去SKIPIF1<0.又SKIPIF1<0,即SKIPIF1<0.令函數(shù)SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0.【題型6與切線有關(guān)的距離最值】滿分技巧利用平行線間距離最短的原理,找尋與已知直線平行的曲線的切線?!纠?】(2023·廣西玉林·校聯(lián)考模擬預(yù)測(cè))已知點(diǎn)P是曲線SKIPIF1<0上的一點(diǎn),則點(diǎn)P到直線SKIPIF1<0的最小距離為.【答案】SKIPIF1<0【解析】由題意可知:SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0相切與點(diǎn)QSKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則切點(diǎn)SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0,即直線方程為SKIPIF1<0,所以與直線SKIPIF1<0間的距離為SKIPIF1<0,即為SKIPIF1<0到直線SKIPIF1<0的最小距離.【變式6-1】(2023·江西宜春·高三??奸_(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0,直線SKIPIF1<0.若A,B分別是曲線SKIPIF1<0和直線l上的動(dòng)點(diǎn),則SKIPIF1<0的最小值是【答案】SKIPIF1<0【解析】SKIPIF1<0,設(shè)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與SKIPIF1<0平行,即斜率為-2,所以SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0與SKIPIF1<0的距離即為SKIPIF1<0的最小值,即SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0.【變式6-2】(2023·云南·高三云南師大附中??茧A段練習(xí))已知點(diǎn)P在函數(shù)SKIPIF1<0的圖象上,點(diǎn)Q在函數(shù)SKIPIF1<0的圖象上,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】由函數(shù)SKIPIF1<0,求導(dǎo)可得:SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0處的切線方程為SKIPIF1<0,整理可得:SKIPIF1<0;由函數(shù)SKIPIF1<0,求導(dǎo)可得:SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0處的切線方程為SKIPIF1<0,整理可得SKIPIF1<0;由直線SKIPIF1<0的斜率SKIPIF1<0,易知:直線SKIPIF1<0分別與兩條切線垂直.【變式6-3】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由題意知,SKIPIF1<0的最小值可轉(zhuǎn)化為曲線SKIPIF1<0上的點(diǎn)SKIPIF1<0到直線SKIPIF1<0上的點(diǎn)SKIPIF1<0的距離的平方的最小值.易知,曲線SKIPIF1<0與直線SKIPIF1<0沒(méi)有交點(diǎn),則當(dāng)曲線SKIPIF1<0在點(diǎn)A處的切線平行于B所在的直線,且AB連線與直線SKIPIF1<0垂直時(shí),兩點(diǎn)間距離最小.由SKIPIF1<0,得SKIPIF1<0,直線SKIPIF1<0的斜率SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,所以點(diǎn)A到直線SKIPIF1<0的距離SKIPIF1<0,故M的最小值為SKIPIF1<0.(建議用時(shí):60分鐘)1.(2023·云南紅河·統(tǒng)考一模)已知函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線經(jīng)過(guò)點(diǎn)SKIPIF1<0,則實(shí)數(shù)m的值為()A.SKIPIF1<0B.SKIPIF1<0C.1D.2【答案】A【解析】由題知,SKIPIF1<0,所以SKIPIF1<0.故選:A2.(2023·重慶·高三統(tǒng)考階段練習(xí))設(shè)曲線SKIPIF1<0在SKIPIF1<0處的切線為SKIPIF1<0,若SKIPIF1<0的傾斜角小于SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】令SKIPIF1<0,求導(dǎo)得SKIPIF1<0,則切線SKIPIF1<0的斜率為SKIPIF1<0,由SKIPIF1<0的傾斜角小于SKIPIF1<0,得切線SKIPIF1<0的斜率SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,解SKIPIF1<0得SKIPIF1<0,解SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B3.(2023·陜西咸陽(yáng)·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0,過(guò)原點(diǎn)作曲線SKIPIF1<0的切線SKIPIF1<0,則切點(diǎn)SKIPIF1<0的坐標(biāo)為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由題意可知:SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,則切線方程為SKIPIF1<0,因?yàn)榍芯€過(guò)原點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0.故選:B4.(2023·福建莆田·高三莆田第二十五中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0的圖象有兩條與直線SKIPIF1<0平行的切線,且切點(diǎn)坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】根據(jù)題意可知SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0,易得SKIPIF1<0,由導(dǎo)數(shù)的幾何意義可得切點(diǎn)為SKIPIF1<0時(shí),切線斜率為SKIPIF1<0,同理可得,SKIPIF1<0點(diǎn)處切線斜率為SKIPIF1<0;又因?yàn)閮蓷l切線與直線SKIPIF1<0平行,可得SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0是關(guān)于方程SKIPIF1<0的兩根,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0可得SKIPIF1<0;所以SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B5.(2023·四川涼山·統(tǒng)考一模)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的圖象上存在兩條相互垂直的切線,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0,不妨設(shè)這兩條相互垂直的切線的切點(diǎn)為SKIPIF1<0,且SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0恒成立,不符合題意,可排除A項(xiàng);所以SKIPIF1<0,此時(shí)易知SKIPIF1<0單調(diào)遞增,要滿足題意則需SKIPIF1<0.故選:D6.(2023·湖北·高三黃石二中校聯(lián)考階段練習(xí))已知曲線SKIPIF1<0在SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則SKIPIF1<0的值為()A.4B.2C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】因?yàn)镾KIPIF1<0,可得SKIPIF1<0,即曲線SKIPIF1<0在SKIPIF1<0處的切線斜率為SKIPIF1<0,且直線SKIPIF1<0的斜率為SKIPIF1<0,由題意可得:SKIPIF1<0,解得SKIPIF1<0.故選:B.7.(2023·云南昆明·高三云南師大附中??茧A段練習(xí))若過(guò)點(diǎn)SKIPIF1<0可以作三條直線與曲線SKIPIF1<0:SKIPIF1<0相切,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】設(shè)一個(gè)切點(diǎn)為SKIPIF1<0,則由SKIPIF1<0,可得該點(diǎn)處的切線方程SKIPIF1<0,當(dāng)SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0時(shí),有SKIPIF1<0,即SKIPIF1<0,則過(guò)點(diǎn)SKIPIF1<0切線的條數(shù)即為方程SKIPIF1<0的解的個(gè)數(shù).設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0時(shí),SKIPIF1<0有三個(gè)解,故選:D.8.(2023·四川綿陽(yáng)·統(tǒng)考模擬預(yù)測(cè))若函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象在公共點(diǎn)處有相同的切線,則實(shí)數(shù)SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】設(shè)函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象公共點(diǎn)坐標(biāo)為SKIPIF1<0,求導(dǎo)得SKIPIF1<0,依題意,SKIPIF1<0,于是SKIPIF1<0,令函數(shù)SKIPIF1<0,顯然函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此在SKIPIF1<0中,SKIPIF1<0,此時(shí)SKIPIF1<0,經(jīng)檢驗(yàn)SKIPIF1<0符合題意,所以SKIPIF1<0.故選:B9.(2023·廣東·校聯(lián)考二模)(多選)已知函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線為SKIPIF1<0,則()A.SKIPIF1<0的斜率的最小值為SKIPIF1<0B.SKIPIF1<0的斜率的最小值為SKIPIF1<0C.SKIPIF1<0的方程為SKIPIF1<0D.SKIPIF1<0的方程為SKIPIF1<0【答案】BCD【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0的斜率的最小值為SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.故選:BCD.10.(2023·全國(guó)·模擬預(yù)測(cè))(多選)若SKIPIF1<0的圖象在SKIPIF1<0處的切線分別為SKIPIF1<0,且SKIPIF1<0,則()A.SKIPIF1<0B.SKIPIF1<0的最小值為2C.SKIPIF1<0在SKIPIF1<0軸上的截距之差為2D.SKIPIF1<0在SKIPIF1<0軸上的截距之積可能為SKIPIF1<0【答案】AC【解析】對(duì)于A,B:由題意可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0的斜率分別為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故A正確,B錯(cuò)誤.對(duì)于C,D:SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0軸上的截距為SKIPIF1<0,SKIPIF1<0的方程為SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0軸上的截距為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0軸上的截距之差為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0軸上的截距之積為SKIPIF1<0,故C正確,D錯(cuò)誤.故選:AC11.(2023·河北石家莊·高三石家莊市第二十七中學(xué)校考階段練習(xí))曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為.【答案】SKIPIF1<0【解析】令SKIPIF1<0,則SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0,故切線方程為SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.12.(2023·全國(guó)·模擬預(yù)測(cè))函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則實(shí)數(shù)SKIPIF1<0.【答案】0【解析】由題可得,SKIPIF1<0,所以在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0,又切線與直線SKIPIF1<0垂直,所以SKIPIF1<0,解得SKIPIF1<0.13.(2023·遼寧朝陽(yáng)·高三校聯(lián)考階段練習(xí))設(shè)函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線為SKIPIF1<0,則SKIPIF1<0的斜率的最小值為,此時(shí)SKIPIF1<0.【答案】-8;SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立.所以SKIPIF1<0的斜率的最小值為-8,此時(shí)SKIPIF1<0.14.(2023·全國(guó)·模擬預(yù)測(cè))試寫(xiě)出曲線SKIPIF1<0與曲線SKIPIF1<0的一條公切線方程.【答案】SKIPIF1<0或SKIPIF1<0(寫(xiě)出一個(gè)即可)【解析】設(shè)公切線SKIPIF1<0與曲線SKIPIF1<0切于點(diǎn)SKIPIF1<0,與曲線SKIPIF1<0切于點(diǎn)SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0.令SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣場(chǎng)物業(yè)管理保密合同
- 保證書(shū)承諾文書(shū)的寫(xiě)作要點(diǎn)
- 遼寧省大連市高中化學(xué) 第三章 金屬及其化合物 3.2.2 鈉的重要化合物習(xí)題課教案 新人教版必修1
- 2024秋一年級(jí)語(yǔ)文上冊(cè) 漢語(yǔ)拼音 11 ie üe er教案 新人教版
- 2024秋六年級(jí)英語(yǔ)上冊(cè) Unit 4 I have a pen pal說(shuō)課稿 人教PEP
- 2024六年級(jí)英語(yǔ)上冊(cè) Module 2 Unit 2 There are lots of beautiful lakes in China教案 外研版(三起)
- 2023九年級(jí)物理上冊(cè) 第一章 分子動(dòng)理論與內(nèi)能1.3 比熱容教案 (新版)教科版
- 河北省工程大學(xué)附屬中學(xué)初中體育《第一課 技巧 跳躍練習(xí) 》教案
- 2024學(xué)年八年級(jí)英語(yǔ)上冊(cè) Module 9 Population Unit 1 The population of China is about 137 billion教案 (新版)外研版
- 2024-2025版高中物理 第二章 恒定電流 7 閉合電路的歐姆定律教案 新人教版選修3-1
- 管理信息系統(tǒng)題目帶答案
- 新概念第一冊(cè)語(yǔ)法知識(shí)點(diǎn)匯總(完美版)
- 【課件】Unit4Readingforwriting課件高中英語(yǔ)人教版(2019)必修第二冊(cè)
- 一年級(jí)海洋教育教案
- 分布函數(shù)(課堂PPT)
- 聚氨酯硬泡沫配方及計(jì)算
- 中國(guó)聯(lián)通M2M UICC卡技術(shù)規(guī)范
- 田徑運(yùn)動(dòng)會(huì)的編排和記錄
- 反歧視、反騷擾、反強(qiáng)迫管理程序
- 質(zhì)控圖與質(zhì)控規(guī)則
- 小學(xué)科學(xué)月相變化(課堂PPT)
評(píng)論
0/150
提交評(píng)論