新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點提升專題07 圓錐曲線中的定值問題(原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點提升專題07 圓錐曲線中的定值問題(原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點提升專題07 圓錐曲線中的定值問題(原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點提升專題07 圓錐曲線中的定值問題(原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點提升專題07 圓錐曲線中的定值問題(原卷版)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題7圓錐曲線中的定值問題一、考情分析求定值是圓錐曲線中頗有難度的一類問題,也是備受高考關(guān)注的一類問題,由于它在解題之前不知道定值的結(jié)果,因而更增添了題目的神秘色彩.解決這類問題時,要善于運用辯證的觀點去思考分析,在動點的“變”中尋求定值的“不變”性,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開神秘的面紗,這樣可將盲目的探索問題轉(zhuǎn)化為有方向有目標(biāo)的一般性證明題,從而找到解決問題的突破口.同時有許多定值問題,通過特殊探索法不但能夠確定出定值,還可以為我們提供解題的線索.二、解題秘籍(一)定值問題解題思路與策略定值問題肯定含有參數(shù),若要證明一個式子是定值,則意味著參數(shù)是不影響結(jié)果的,也就是說參數(shù)在解式子的過程中都可以消掉,因此解決定值問題的關(guān)鍵是設(shè)參數(shù):

(1)在解析幾何中參數(shù)可能是點(注意如果設(shè)點是兩個參數(shù)時,注意橫坐標(biāo)要滿足圓錐曲線方程)

(2)可能是角(這里的角常常是將圓錐曲線上的點設(shè)為三角函數(shù)角的形式),

(3)也可能是斜率(這個是最常用的,但是既然設(shè)斜率了,就要考慮斜率是否存在的情況)

常用的參數(shù)就是以上三種,但是注意我們設(shè)參數(shù)時要遵循一個原則:參數(shù)越少越好.

因此定值問題的解題思路是:

(1)設(shè)參數(shù);

(2)用參數(shù)來表示要求定值的式子;

(3)消參數(shù).

2.圓錐曲線中的定值問題的常見類型及解題策略(1)求代數(shù)式為定值.依題意設(shè)條件,得出與代數(shù)式參數(shù)有關(guān)的等式,代入代數(shù)式、化簡即可得出定值;(2)求點到直線的距離為定值.利用點到直線的距離公式得出距離的解析式,再利用題設(shè)條件化簡、變形求得;(3)求某線段長度為定值.利用長度公式求得解析式,再依據(jù)條件對解析式進(jìn)行化簡、變形即可求得.【例1】(2023屆湖湘名校教育聯(lián)合體高三上學(xué)期9月大聯(lián)考)已知橢圓SKIPIF1<0為右焦點,直線SKIPIF1<0與橢圓C相交于A,B兩點,取A點關(guān)于x軸的對稱點S,設(shè)線段SKIPIF1<0與線段SKIPIF1<0的中垂線交于點Q.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0;(2)當(dāng)SKIPIF1<0時,求SKIPIF1<0是否為定值?若為定值,則求出定值;若不為定值,則說明理由.【解析】(1)設(shè)SKIPIF1<0,線段SKIPIF1<0的中點M坐標(biāo)為SKIPIF1<0,聯(lián)立得SKIPIF1<0消去y可得:SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,代入直線SKIPIF1<0方程,求得SKIPIF1<0,因為Q為SKIPIF1<0三條中垂線的交點,所以SKIPIF1<0,有SKIPIF1<0,直線SKIPIF1<0方程為SKIPIF1<0.令SKIPIF1<0,所以SKIPIF1<0.由橢圓SKIPIF1<0可得右焦點SKIPIF1<0,故SKIPIF1<0.(2)設(shè)SKIPIF1<0,中點M坐標(biāo)為SKIPIF1<0.SKIPIF1<0相減得SKIPIF1<0,SKIPIF1<0.又Q為SKIPIF1<0的外心,故SKIPIF1<0,所以SKIPIF1<0,直線SKIPIF1<0方程為SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0而SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以當(dāng)t變化時,SKIPIF1<0為定值SKIPIF1<0.【例2】(2023屆河南省濮陽市高三上學(xué)期測試)已知橢圓SKIPIF1<0:SKIPIF1<0的右焦點為SKIPIF1<0,圓SKIPIF1<0:SKIPIF1<0,過SKIPIF1<0且垂直于SKIPIF1<0軸的直線被橢圓SKIPIF1<0和圓SKIPIF1<0所截得的弦長分別為SKIPIF1<0和SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)過圓SKIPIF1<0上一點SKIPIF1<0(不在坐標(biāo)軸上)作SKIPIF1<0的兩條切線SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,證明:SKIPIF1<0為定值.【解析】(1)設(shè)橢圓SKIPIF1<0的半焦距為SKIPIF1<0,過SKIPIF1<0且垂直于SKIPIF1<0軸的直線被橢圓SKIPIF1<0所截得的弦長分別為SKIPIF1<0,則SKIPIF1<0;過SKIPIF1<0且垂直于SKIPIF1<0軸的直線被圓SKIPIF1<0所截得的弦長分別為SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0.①設(shè)過點SKIPIF1<0與橢圓SKIPIF1<0相切的直線方程為SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0.②由題意知SKIPIF1<0,SKIPIF1<0為方程②的兩根,由根與系數(shù)的關(guān)系及①可得SKIPIF1<0.又因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為定值SKIPIF1<0.(二)與線段長度有關(guān)的定值問題與線段長度有關(guān)的定值問題通常是先引入?yún)?shù),利用距離公式或弦長公式得到長度解析式,再對解析式化簡,得出結(jié)果為定值【例3】(2023屆遼寧省朝陽市高三上學(xué)期9月月考)已知雙曲線SKIPIF1<0的離心率為SKIPIF1<0,點SKIPIF1<0在雙曲線SKIPIF1<0上.(1)求雙曲線SKIPIF1<0的方程;(2)點SKIPIF1<0,SKIPIF1<0在雙曲線SKIPIF1<0上,直線SKIPIF1<0,SKIPIF1<0與SKIPIF1<0軸分別相交于SKIPIF1<0兩點,點SKIPIF1<0在直線SKIPIF1<0上,若坐標(biāo)原點SKIPIF1<0為線段SKIPIF1<0的中點,SKIPIF1<0,證明:存在定點SKIPIF1<0,使得SKIPIF1<0為定值.【解析】(1)由題意,雙曲線SKIPIF1<0的離心率為SKIPIF1<0,且SKIPIF1<0在雙曲線SKIPIF1<0上,可得SKIPIF1<0,解得SKIPIF1<0,所以雙曲線的方程為SKIPIF1<0.(2)由題意知,直線的SKIPIF1<0的斜率存在,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,同理可得SKIPIF1<0,因為SKIPIF1<0為SKIPIF1<0的中點,所以SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0,則直線方程為SKIPIF1<0,即SKIPIF1<0,此時直線SKIPIF1<0過點SKIPIF1<0,不合題意;若SKIPIF1<0時,則直線方程為SKIPIF1<0,恒過定點SKIPIF1<0,所以SKIPIF1<0為定值,又由SKIPIF1<0為直角三角形,且SKIPIF1<0為斜邊,所以當(dāng)SKIPIF1<0為SKIPIF1<0的中點SKIPIF1<0時,SKIPIF1<0.(三)與面積有關(guān)的定值問題與面積有關(guān)的定值問題通常是利用面積公式把面積表示成某些變量的表達(dá)式,再利用題中條件化簡.【例4】(2023屆河南省部分學(xué)校高三上學(xué)期9月聯(lián)考)已知橢圓SKIPIF1<0:SKIPIF1<0的左焦點為SKIPIF1<0,上、下頂點分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)若橢圓上有三點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,證明:四邊形SKIPIF1<0的面積為定值.【解析】(1)依題意SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以橢圓方程為SKIPIF1<0.(2)證明:設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,若直線SKIPIF1<0的斜率不存在,SKIPIF1<0與左頂點或右頂點重合,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,若直線SKIPIF1<0的斜率存在,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,代入橢圓方程整理得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0所以SKIPIF1<0,整理得SKIPIF1<0,又SKIPIF1<0,又原點SKIPIF1<0到SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0,將SKIPIF1<0代入得SKIPIF1<0,所以SKIPIF1<0,綜上可得,四邊形SKIPIF1<0的面積為定值SKIPIF1<0.(四)與斜率有關(guān)的定值問題與斜率有關(guān)的定值問題常見類型是斜率之積商或斜率之和差為定值,求解時一般先利用斜率公式寫出表達(dá)式,再利用題中條件或韋達(dá)定理化簡.【例5】(2023屆江蘇省南通市高三上學(xué)期第一次質(zhì)量監(jiān)測)已知SKIPIF1<0分別是橢圓SKIPIF1<0的左?右頂點,SKIPIF1<0分別是SKIPIF1<0的上頂點和左焦點.點SKIPIF1<0在SKIPIF1<0上,滿足SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)過點SKIPIF1<0作直線SKIPIF1<0(與SKIPIF1<0軸不重合)交SKIPIF1<0于SKIPIF1<0兩點,設(shè)直線SKIPIF1<0的斜率分別為SKIPIF1<0,求證:SKIPIF1<0為定值.【解析】(1)因為SKIPIF1<0,故可設(shè)SKIPIF1<0,因為SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.又SKIPIF1<0在橢圓SKIPIF1<0上,故SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0.又SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0的方程為SKIPIF1<0.(2)因為橢圓方程為SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0斜率為0時SKIPIF1<0或SKIPIF1<0重合,不滿足題意,故可設(shè)SKIPIF1<0:SKIPIF1<0.聯(lián)立SKIPIF1<0可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故定值為SKIPIF1<0(五)與向量有關(guān)的定值問題與向量有關(guān)的定值問題常見類型一是求數(shù)量積有關(guān)的定值問題,二是根據(jù)向量共線,寫出向量系數(shù)的表達(dá)式,再通過計算得出與向量系數(shù)有關(guān)的定值結(jié)論.【例6】(2023屆湖南省部分校高三上學(xué)期9月月考)已知雙曲線SKIPIF1<0的離心率為SKIPIF1<0,點SKIPIF1<0在SKIPIF1<0上.(1)求雙曲線SKIPIF1<0的方程.(2)設(shè)過點SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點,問在SKIPIF1<0軸上是否存在定點SKIPIF1<0,使得SKIPIF1<0為常數(shù)?若存在,求出點SKIPIF1<0的坐標(biāo)以及該常數(shù)的值;若不存在,請說明理由.【解析】(1)因為雙曲線SKIPIF1<0的離心率為SKIPIF1<0,所以SKIPIF1<0,化簡得SKIPIF1<0.將點SKIPIF1<0的坐標(biāo)代入SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0消去SKIPIF1<0得(1-SKIPIF1<0SKIPIF1<0,由題可知SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0.設(shè)存在符合條件的定點SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,化簡得SKIPIF1<0.因為SKIPIF1<0為常數(shù),所以SKIPIF1<0,解得SKIPIF1<0.此時該常數(shù)的值為SKIPIF1<0,所以,在SKIPIF1<0軸上存在點SKIPIF1<0,使得SKIPIF1<0為常數(shù),該常數(shù)為SKIPIF1<0.【例7】(2022屆上海市金山區(qū)高三上學(xué)期一模)已知SKIPIF1<0為橢圓C:SKIPIF1<0內(nèi)一定點,Q為直線l:SKIPIF1<0上一動點,直線PQ與橢圓C交于A?B兩點(點B位于P?Q兩點之間),O為坐標(biāo)原點.(1)當(dāng)直線PQ的傾斜角為SKIPIF1<0時,求直線OQ的斜率;(2)當(dāng)SKIPIF1<0AOB的面積為SKIPIF1<0時,求點Q的橫坐標(biāo);(3)設(shè)SKIPIF1<0,SKIPIF1<0,試問SKIPIF1<0是否為定值?若是,請求出該定值;若不是,請說明理由.【解析】(1)因為直線PQ的傾斜角為SKIPIF1<0,且SKIPIF1<0,所以直線PQ的方程為:SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以直線OQ的斜率是SKIPIF1<0;(2)易知直線PQ的斜率存在,設(shè)直線PQ的方程為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,所以直線PQ的方程為SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0;(3)易知直線PQ的斜率存在,設(shè)直線PQ的方程為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.(六)與代數(shù)式有關(guān)的定值問題與代數(shù)式有關(guān)的定值問題.一般是依題意設(shè)條件,得出與代數(shù)式參數(shù)有關(guān)的等式,代入代數(shù)式、化簡即可得出定值【例8】在平面直角坐標(biāo)系SKIPIF1<0中,橢圓SKIPIF1<0的右準(zhǔn)線為直線SKIPIF1<0,動直線SKIPIF1<0交橢圓于SKIPIF1<0兩點,線段SKIPIF1<0的中點為SKIPIF1<0,射線SKIPIF1<0分別交橢圓及直線SKIPIF1<0于點SKIPIF1<0,如圖,當(dāng)SKIPIF1<0兩點分別是橢圓SKIPIF1<0的右頂點及上頂點時,點SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0(其中SKIPIF1<0為橢圓的離心率),且SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)如果SKIPIF1<0是SKIPIF1<0的等比中項,那么SKIPIF1<0是否為常數(shù)?若是,求出該常數(shù);若不是,請說明理由.【解析】(1)橢圓SKIPIF1<0的右準(zhǔn)線為直線SKIPIF1<0,動直線SKIPIF1<0交橢圓于SKIPIF1<0兩點,當(dāng)SKIPIF1<0零點分別是橢圓SKIPIF1<0的有頂點和上頂點時,則SKIPIF1<0,因為線段SKIPIF1<0的中點為SKIPIF1<0,射線SKIPIF1<0分別角橢圓及直線SKIPIF1<0與SKIPIF1<0兩點,所以SKIPIF1<0,由SKIPIF1<0三點共線,可得SKIPIF1<0,解得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0,解得SKIPIF1<0,所以橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)解:把SKIPIF1<0代入橢圓SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,因為SKIPIF1<0是SKIPIF1<0的等比中項,所以SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,此時滿足SKIPIF1<0,所以SKIPIF1<0為常數(shù)SKIPIF1<0.(六)與定值有關(guān)的結(jié)論1.若點A,B是橢圓C:SKIPIF1<0上關(guān)于原點對稱的兩點,點P是橢圓C上與A,B不重合的點,則SKIPIF1<0;2.若點A,B是雙曲線C:SKIPIF1<0上關(guān)于原點對稱的兩點,點P是雙曲線C上與A,B不重合的點,則SKIPIF1<0.3.設(shè)點是橢圓C:上一定點,點A,B是橢圓C上不同于P的兩點,若SKIPIF1<0,則直線AB斜率為定值;4.設(shè)點是雙曲線C:一定點,點A,B是雙曲線C上不同于P的兩點,若SKIPIF1<0,直線AB斜率為定值;5.設(shè)點是拋物線C:一定點,點A,B是拋物線C上不同于P的兩點,若SKIPIF1<0,直線AB斜率為定值.6.設(shè)SKIPIF1<0是橢圓上不同3點,B,C關(guān)于x軸對稱,直線AC,BC與x軸分別交于點SKIPIF1<0,則SKIPIF1<0.7.點A,B是橢圓C:SKIPIF1<0上動點,O為坐標(biāo)原點,若SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0(即點O到直線AB為定值)8.經(jīng)過橢圓SKIPIF1<0(a>b>0)的長軸的兩端點A1和A2的切線,與橢圓上任一點的切線相交于P1和P2,則SKIPIF1<0.9.過橢圓SKIPIF1<0(a>b>0)的右焦點F作直線交該橢圓右支于M,N兩點,弦MN的垂直平分線交x軸于P,則SKIPIF1<0.10.點SKIPIF1<0為橢圓SKIPIF1<0(包括圓在內(nèi))在第一象限的弧上任意一點,過SKIPIF1<0引SKIPIF1<0軸、SKIPIF1<0軸的平行線,交SKIPIF1<0軸、SKIPIF1<0軸于SKIPIF1<0,交直線SKIPIF1<0于SKIPIF1<0,記SKIPIF1<0與SKIPIF1<0的面積為SKIPIF1<0,則:SKIPIF1<0.【例9】(2022屆上海市黃浦區(qū)高三一模)設(shè)常數(shù)SKIPIF1<0且SKIPIF1<0,橢圓SKIPIF1<0:SKIPIF1<0,點SKIPIF1<0是SKIPIF1<0上的動點.(1)若點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,求SKIPIF1<0的焦點坐標(biāo);(2)設(shè)SKIPIF1<0,若定點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,求SKIPIF1<0的最大值與最小值;(3)設(shè)SKIPIF1<0,若SKIPIF1<0上的另一動點SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點),求證:SKIPIF1<0到直線PQ的距離是定值.【解析】(1)∵橢圓SKIPIF1<0:SKIPIF1<0,點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0的焦點坐標(biāo)為SKIPIF1<0;(2)設(shè)SKIPIF1<0,又SKIPIF1<0,由題知SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值為25;當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值為SKIPIF1<0;∴SKIPIF1<0的最大值為5,最小值為SKIPIF1<0.(3)當(dāng)SKIPIF1<0時,橢圓SKIPIF1<0:SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)直線PQ斜率存在時設(shè)其方程為SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0可知SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,可得SKIPIF1<0,滿足SKIPIF1<0,∴SKIPIF1<0到直線PQ的距離為SKIPIF1<0為定值;當(dāng)直線PQ斜率不存在時,SKIPIF1<0,可得直線方程為SKIPIF1<0,SKIPIF1<0到直線PQ的距離為SKIPIF1<0.綜上,SKIPIF1<0到直線PQ的距離是定值.三、跟蹤檢測1.(2023屆江蘇省南通市海安市高三上學(xué)期質(zhì)量監(jiān)測)已知橢圓SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,短軸長為2.(1)求SKIPIF1<0的方程;(2)過點SKIPIF1<0且斜率不為0的直線SKIPIF1<0與SKIPIF1<0自左向右依次交于點SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0的中點,記直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0為定值.2.(2023屆湖北省“宜荊荊恩”高三上學(xué)期考試)已知雙曲線SKIPIF1<0與雙曲線SKIPIF1<0有相同的漸近線,且過點SKIPIF1<0.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)已知SKIPIF1<0是雙曲線SKIPIF1<0上不同于SKIPIF1<0的兩點,且SKIPIF1<0于SKIPIF1<0,證明:存在定點SKIPIF1<0,使SKIPIF1<0為定值.3.(2023屆江蘇省南京市高三上學(xué)期9月學(xué)情調(diào)研)已知拋物線C:SKIPIF1<0的焦點為F,過點P(0,2)的動直線l與拋物線相交于A,B兩點.當(dāng)l經(jīng)過點F時,點A恰好為線段PF中點.(1)求p的值;(2)是否存在定點T,使得SKIPIF1<0為常數(shù)?若存在,求出點T的坐標(biāo)及該常數(shù);若不存在,說明理由.4.(2023屆重慶市2023屆高三上學(xué)期質(zhì)量檢測)已知拋物線SKIPIF1<0的焦點為F,斜率不為0的直線l與拋物線C相切,切點為A,當(dāng)l的斜率為2時,SKIPIF1<0.(1)求p的值;(2)平行于l的直線交拋物線C于B,D兩點,且SKIPIF1<0,點F到直線BD與到直線l的距離之比是否為定值?若是,求出此定值;否則,請說明理由.5.(2023屆江蘇省百校聯(lián)考高三上學(xué)期考試)設(shè)SKIPIF1<0為橢圓SKIPIF1<0:SKIPIF1<0的右焦點,過點SKIPIF1<0且與SKIPIF1<0軸不重合的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0;(2)在SKIPIF1<0軸上是否存在異于SKIPIF1<0的定點SKIPIF1<0,使SKIPIF1<0為定值(其中SKIPIF1<0,SKIPIF1<0分別為直線SKIPIF1<0,SKIPIF1<0的斜率)?若存在,求出SKIPIF1<0的坐標(biāo);若不存在,請說明理由.6.(2022屆湖南省長沙市寧鄉(xiāng)市高三下學(xué)期5月模擬)已知拋物線SKIPIF1<0SKIPIF1<0的焦點與橢圓SKIPIF1<0SKIPIF1<0的右焦點SKIPIF1<0重合,橢圓SKIPIF1<0的長軸長為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)過點SKIPIF1<0且斜率為SKIPIF1<0的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0兩點,交拋物線SKIPIF1<0于SKIPIF1<0兩點,請問是否存在實常數(shù)SKIPIF1<0,使SKIPIF1<0為定值?若存在,求出SKIPIF1<0的值;若不存在,說明理由.7.(2023屆江蘇省南京市高三上學(xué)期數(shù)學(xué)大練)已知點B是圓C:SKIPIF1<0上的任意一點,點F(SKIPIF1<0,0),線段BF的垂直平分線交BC于點P.(1)求動點Р的軌跡E的方程;(2)設(shè)曲線E與x軸的兩個交點分別為A1,A2,Q為直線x=4上的動點,且Q不在x軸上,QA1與E的另一個交點為M,QA2與E的另一個交點為N,證明:△FMN的周長為定值.8.(2023屆安徽省皖南八校高三上學(xué)期考試)已知橢圓SKIPIF1<0的左?右焦點為SKIPIF1<0,SKIPIF1<0,且左焦點坐標(biāo)為SKIPIF1<0,SKIPIF1<0為橢圓上的一個動點,SKIPIF1<0的最大值為SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)若過點SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點,點SKIPIF1<0,記直線SKIPIF1<0的斜率為SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,證明:SKIPIF1<0.9.(2023屆北京市房山區(qū)高三上學(xué)期考試)已知橢圓SKIPIF1<0的長軸的兩個端點分別為SKIPIF1<0離心率為SKIPIF1<0.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)M為橢圓C上除A,B外任意一點,直線SKIPIF1<0交直線SKIPIF1<0于點N,點O為坐標(biāo)原點,過點O且與直線SKIPIF1<0垂直的直線記為l,直線SKIPIF1<0交y軸于點P,交直線l于點Q,求證:SKIPIF1<0為定值.10.(2023屆湖南師范大學(xué)附屬中學(xué)高三上學(xué)期月考)已知SKIPIF1<0,直線SKIPIF1<0的斜率之積為SKIPIF1<0,記動點SKIPIF1<0的軌跡為曲線SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)直線SKIPIF1<0與曲線SKIPIF1<0交于SKIPIF1<0兩點,SKIPIF1<0為坐標(biāo)原點,若直線SKIPIF1<0的斜率之積為SKIPIF1<0,證明:SKIPIF1<0的面積為定值.11.(2023屆貴州省遵義市新高考協(xié)作體高三上學(xué)期質(zhì)量監(jiān)測)已知點SKIPIF1<0是橢圓SKIPIF1<0的左焦點,SKIPIF1<0是橢圓SKIPIF1<0上的任意一點,SKIPIF1<0.(1)求SKIPIF1<0的最大值;(2)過點SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論