![9.2.3用樣本估計總體課件高一下學(xué)期數(shù)學(xué)人教A版_第1頁](http://file4.renrendoc.com/view7/M00/12/17/wKhkGWbVDceASUAyAAC8iRF1j9U402.jpg)
![9.2.3用樣本估計總體課件高一下學(xué)期數(shù)學(xué)人教A版_第2頁](http://file4.renrendoc.com/view7/M00/12/17/wKhkGWbVDceASUAyAAC8iRF1j9U4022.jpg)
![9.2.3用樣本估計總體課件高一下學(xué)期數(shù)學(xué)人教A版_第3頁](http://file4.renrendoc.com/view7/M00/12/17/wKhkGWbVDceASUAyAAC8iRF1j9U4023.jpg)
![9.2.3用樣本估計總體課件高一下學(xué)期數(shù)學(xué)人教A版_第4頁](http://file4.renrendoc.com/view7/M00/12/17/wKhkGWbVDceASUAyAAC8iRF1j9U4024.jpg)
![9.2.3用樣本估計總體課件高一下學(xué)期數(shù)學(xué)人教A版_第5頁](http://file4.renrendoc.com/view7/M00/12/17/wKhkGWbVDceASUAyAAC8iRF1j9U4025.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
德宏州民族第一中學(xué)9.2.3總體集中趨勢的估計1.第p百分位數(shù)的定義2.計算一組n個數(shù)據(jù)的第p百分位數(shù)的步驟3.四分位數(shù)課前回顧眾數(shù)、中位數(shù)和平均數(shù)的定義,計算及其比較學(xué)習(xí)目標(biāo)為了了解總體的情況,前面我們研究了如何通過樣本的分布規(guī)律估計總體的分布規(guī)律.但有時候,我們可能不太關(guān)心總體的分布規(guī)律,而更關(guān)注總體取值在某一方面的特征.例如,對于某縣今年小麥的收成情況,我們可能會更關(guān)注該縣今年小麥的總產(chǎn)量或平均每公頃的產(chǎn)量,而不是產(chǎn)量的分布;對于一個國家國民的身高情況,我們可能會更關(guān)注身高的平均數(shù)或中位數(shù),而不是身高的分布;等等.在初中的學(xué)習(xí)中我們已經(jīng)了解到,平均數(shù)、中位數(shù)和眾數(shù)等都是刻畫“中心位置”的量,它們從不同角度刻畫了一組數(shù)據(jù)的集中趨勢.下面我們通過具體實例進一步了解這些量的意義,探究它們之間的聯(lián)系與區(qū)別,并根據(jù)樣本的集中趨勢估計總體的集中趨勢.例4利用9.2.1節(jié)中100戶居民用戶的月均用水量的調(diào)査數(shù)據(jù),計算樣本數(shù)據(jù)的平均數(shù)和中位數(shù),并據(jù)此估計全市居民用戶月均用水量的平均數(shù)和中位數(shù).因為數(shù)據(jù)是抽自全市居民戶的簡單隨機樣本,所以我們可以據(jù)此估計全市居民用戶的月均用水量約為8.79t,其中位數(shù)約為6.6t.假設(shè)某個居民小區(qū)有2000戶,你能估計該小區(qū)的月用水總量嗎?思考小明用統(tǒng)計軟件計算了100戶居民用水量的平均數(shù)和中位數(shù).但在錄入數(shù)據(jù)時,不小心把一個數(shù)據(jù)7.7錄成了77.請計算錄入數(shù)據(jù)的平均數(shù)和中位數(shù),并與真實的樣本平均數(shù)和中位數(shù)作比較.哪個量的值變化更大?你能解釋其中的原因嗎?通過簡單計算可以發(fā)現(xiàn),平均數(shù)由原來的8.79t變?yōu)?.483t,中位數(shù)沒有變化,還是6.6t.這是因為樣本平均數(shù)與每一個樣本數(shù)據(jù)有關(guān),樣本中的任何一個數(shù)據(jù)的改變都會引起平均數(shù)的改變;但中位數(shù)只利用了樣本數(shù)據(jù)中間位置的一個或兩個值,并未利用其他數(shù)據(jù),所以不是任何一個樣本數(shù)據(jù)的改變都會引起中位數(shù)的改變.因此,與中位數(shù)比較,平均數(shù)反映出樣本數(shù)據(jù)中的更多信息,對樣本中的極端值更加敏感.平均數(shù)、中位數(shù)(1)平均數(shù)中位數(shù)(3)中位數(shù)平均數(shù)(2)探究平均數(shù)和中位數(shù)都描述了數(shù)據(jù)的集中趨勢,它們的大小關(guān)系和數(shù)據(jù)分布的形態(tài)有關(guān).在圖9.2—8的三種分布形態(tài)中.平均數(shù)和中位數(shù)的大小存在什么關(guān)系?一般來說,對一個單峰的頻率分布直方圖來說,如果直方圖的形狀是對稱的(圖9.2-8(1)),那么平均數(shù)和中位數(shù)應(yīng)該大體上差不多;如果直方圖在右邊“拖尾”(圖9.2-8(2)),那么平均數(shù)大于中位數(shù);如果直方圖在左邊“拖尾”(圖9.2-8C3)),那么平均數(shù)小于中位數(shù).也就是說,和中位數(shù)相比,平均數(shù)總是在“長尾巴”那邊.平均數(shù)、中位數(shù)(1)平均數(shù)中位數(shù)(3)中位數(shù)平均數(shù)(2)例5
某學(xué)校要定制高一年級的校服,學(xué)生根據(jù)廠家提供的參考身高選擇校服規(guī)格.據(jù)統(tǒng)計,高一年級女生需要不同規(guī)格校服的頻數(shù)如表9.2-5所示.校服規(guī)格155160165170175合計頻數(shù)39641679026386如果用一個量來代表該校高一年級女生所需校服的規(guī)格,那么在中位數(shù)、平均數(shù)和眾數(shù)中,哪個量比較合適?試討論用表9.2-5中的數(shù)據(jù)估計全國高一年級女生校服規(guī)格的合理性.分析:雖然校服規(guī)格是用數(shù)字表示的,但它們事實上是幾種不同的類別.對于這樣的分類數(shù)據(jù),用眾數(shù)作為這組數(shù)據(jù)的代表比較合適.解:為了更直觀地觀察數(shù)據(jù)的特征,我們用條形圖來表示表中的數(shù)據(jù)(圖9.2-9).可以發(fā)現(xiàn),選擇校服規(guī)格為“165”的女生的頻數(shù)最高,所以用眾數(shù)165作為該校高一年級女生校服的規(guī)格比較合適.由于全國各地的高一年級女生的身高存在一定的差異,所以用一個學(xué)校的數(shù)據(jù)估計全國高一年級女生的校服規(guī)格不合理.眾數(shù)只利用了出現(xiàn)次數(shù)最多的那個值的信息.眾數(shù)只能告訴我們它比其他值出現(xiàn)的次數(shù)多,但并未告訴我們它比別的數(shù)值多的程度.因此,眾數(shù)只能傳遞數(shù)據(jù)中的信息的很少一部分,對極端值也不敏感.一般地,對數(shù)值型數(shù)據(jù)(如用水量、身高、收入、產(chǎn)量等)集中趨勢的描述,可以用平均數(shù)、中位數(shù);而對分類型數(shù)據(jù)(如校服規(guī)格、性別、產(chǎn)品質(zhì)量等級等)集中趨勢的描述,可以用眾數(shù).探究樣本的平均數(shù)、中位數(shù)和眾數(shù)可以分別作為總體的平均數(shù)、中位數(shù)和眾數(shù)的估計,但在某些情況下我們無法獲知原始的樣本數(shù)據(jù).例如,我們在報紙、網(wǎng)絡(luò)上獲得的往往是已經(jīng)整理好的統(tǒng)計表或統(tǒng)計圖.這時該如何估計樣本的平均數(shù)、中位數(shù)和眾數(shù)?你能以圖9.2-1中頻率分布直方圖提供的信息為例,給出估計方法嗎?在頻率分布直方圖中,我們無法知道每個組內(nèi)的數(shù)據(jù)是如何分布的.此時,通常假設(shè)它們在組內(nèi)均勻分布.這樣就可以獲得樣本的平均數(shù)、中位數(shù)和眾數(shù)的近似估計,進而估計總體的平均數(shù)、中位數(shù)和眾數(shù).因為樣本平均數(shù)可以表示為數(shù)據(jù)與它的頻率的乘積之和,所以在頻率分布直方圖中,樣本平均數(shù)可以用每個小矩形底邊中點的橫坐標(biāo)與小矩形的面積的乘積之和近似代替.
這個結(jié)果與根據(jù)原始數(shù)據(jù)計算的樣本平均數(shù)8.79相差不大.如圖9.2-11所示.這個結(jié)果與根據(jù)原始數(shù)據(jù)求得的中位數(shù)6.6相差不大.以上我們討論了平均數(shù)、中位數(shù)和眾數(shù)等特征量在刻畫一組數(shù)據(jù)的集中趨勢時的各自特點,并研究了用樣本的特征量估計總體的特征量的方法.需要注意的是,這些特征量有時也會被利用而產(chǎn)生誤導(dǎo).例如,假設(shè)你到人力市場去找工作,有一個企業(yè)老板告訴你,“我們企業(yè)員工的年平均收入是20萬元”,你該如何理解這句話?這句話是真實的,但它可能描述的是差異巨大的實際情況.例如,可能這個企業(yè)的工資水平普遍較高,也就是員工年收入的中位數(shù)、眾數(shù)與平均數(shù)差不多;也可能是絕大多數(shù)員工的年收入較低(如大多數(shù)是5萬元左右),而少數(shù)員工的年收入很高,甚至達到100萬元,在這種情況下年收入的平均數(shù)就比中位數(shù)大得多.盡管在后一種情況下,用中位數(shù)或眾數(shù)比用平均數(shù)更合理些,但這個企業(yè)的老板為了招攬員工,卻用了平均數(shù).所以,我們要強調(diào)“用數(shù)據(jù)說話”,但同時又要防止被數(shù)據(jù)誤導(dǎo),這就需要掌握更多的統(tǒng)計知識和方法.小結(jié)反思作業(yè):優(yōu)化課后訓(xùn)練A組練習(xí)(第208頁)1.根據(jù)表9.2-2中的數(shù)據(jù),估計該市2015年全年空氣質(zhì)量指數(shù)的平均數(shù)、中位數(shù)和第80百分位數(shù).(注:已知該市屬于“嚴重污染”等級的空氣質(zhì)量指數(shù)不超過400).空氣質(zhì)量等級(空氣質(zhì)量指數(shù)AQI)頻數(shù)頻率優(yōu)(AQI≤50)8322.8%良(50<AQI≤100)12133.2%輕度污染(100<AQI≤150)6818.6%中度污染(150<AQI≤200)4913.4%重度污染(200<AQI≤300)308.2%嚴重污染(AQI>300)143.8%合計365100%2.假設(shè)你是某市一名交通部門的工作人員,你打算向市長報告國家對本市26個公路項目投資的平均資金數(shù)額.已知國家對本市一條新公路的建設(shè)投資為2000萬元人民幣,對另外25個公路項目的投資是20?100萬元,這26個投資金額的中位數(shù)是25萬元,平均數(shù)是100萬元,眾數(shù)是20萬元.請你根據(jù)上面的信息給市長寫一份簡要的報告.為了避免極端值對平均數(shù)的影響,可以把新建設(shè)公路項目和另外25個公路項目分開報告,例如公路建設(shè)的總投資額為2600萬元,其中一條新公路的建設(shè)投資2000萬元,其他25項公路是擴建或部分路段的改造項目,它們的平均投資是24萬元.3.某校舉行演講比賽,10位評委對兩位選手的評分如下:甲7.57.57.87.88.08.08.28.38.49.9乙7.57.87.87.88.08.08.38.38.58.5選手的最終得分為去掉一個最低分和一個最高分之后,剩下8個評分的平均數(shù).那么,這兩個選手的最后得分是多少?若直接用10位評委評分的平均數(shù)作為選手的得分,兩位選手的排名有變化嗎?你認為哪種評分辦法更好?為什么?兩種評分方法甲、乙得分的平均數(shù)見下表:選手8位評委評分的平均數(shù)10位評委評分的平均數(shù)甲8.008.14乙8.068.05如果采用去掉一個最低分和一個最高分的評分方法,乙選手比甲選手得分高.但是如果按照10位評委的平均分作為最后的得分,甲選手的得分反而比乙的高.這是因為有一個評委給甲選手評分為9.9,高出其他評委的評分很多,這一個評委的評分使排名順序發(fā)生了改變.去掉一個最低分和一個最高分的評分機制可以規(guī)避個別評委對選手得分的影響.統(tǒng)計學(xué)在軍事中的應(yīng)用——二戰(zhàn)時德國坦克總量的估計問題俗話說,知己知彼方能百戰(zhàn)百勝.在第二次世界大戰(zhàn)期間,德國制造坦克的技術(shù)非常先進,坦克的大量使用使納粹德國占據(jù)了戰(zhàn)場主動權(quán).因此,了解德軍坦克的生產(chǎn)能力對盟軍具有非常重要的戰(zhàn)略意義.為此,除了通過常規(guī)情報收集信息外,盟軍請來了統(tǒng)計學(xué)家參與情報的收集和分析工作.根據(jù)德國戰(zhàn)后公布的生產(chǎn)記錄顯示,運用統(tǒng)計方法估計的結(jié)果與真實值非常接近,而通過常規(guī)情報進行的估計則與真實值相去甚遠.下表是二戰(zhàn)期間的三個月中,德國記錄的生產(chǎn)坦克的數(shù)目和情報估計、統(tǒng)計估計的坦克數(shù)目.時間德國記錄/輛情報估計/輛統(tǒng)計估計/輛1940年6月12210001691941年6月27115502441942年8月3421550327統(tǒng)計估計有如此高的精確度,統(tǒng)計學(xué)家是怎么做到的呢?原來,盟軍在繳獲的德軍坦克上發(fā)現(xiàn)了一個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 晉教版地理八年級下冊《8.1 西雙版納──晶瑩剔透的“綠寶石”》聽課評課記錄
- 小學(xué)二年級口算練習(xí)題
- 蘇教版四年級數(shù)學(xué)上冊期末復(fù)習(xí)口算練習(xí)題一
- 人教版七年級數(shù)學(xué)下冊 聽評課記錄5.3.1 第1課時《平行線的性質(zhì)》
- 七年級體育教學(xué)計劃
- 商業(yè)營銷策劃項目合作協(xié)議書范本
- 建筑智能化工程框架合作協(xié)議書范本
- 商用精裝房屋租賃協(xié)議書范本
- 鍋爐及附屬供熱設(shè)備安裝施工合同范本
- 汽車掛靠租賃協(xié)議書范本
- 引水隧洞施工支洞專項施工方案
- 高標(biāo)準農(nóng)田建設(shè)項目檔案資料驗收清單
- 《教育心理學(xué)(第3版)》全套教學(xué)課件
- JT-T-496-2018公路地下通信管道高密度聚乙烯硅芯塑料管
- 貴州省銅仁市2024年中考英語模擬試卷(含答案)
- DB43-T 2939-2024 醬腌菜咸胚中亞硝酸鹽的測定頂空-氣相色譜法
- 藥品不良反應(yīng)監(jiān)測工作制度及流程
- 食材配送投標(biāo)方案技術(shù)標(biāo)
- 《電力系統(tǒng)自動化運維綜合實》課件-通信設(shè)備接地線接頭制作
- 國際標(biāo)準《風(fēng)險管理指南》(ISO31000)的中文版
- 再見深海合唱簡譜【珠海童年樹合唱團】
評論
0/150
提交評論