2025年新高考數(shù)學(xué)名校選填壓軸好題匯編02(解析版)_第1頁
2025年新高考數(shù)學(xué)名校選填壓軸好題匯編02(解析版)_第2頁
2025年新高考數(shù)學(xué)名校選填壓軸好題匯編02(解析版)_第3頁
2025年新高考數(shù)學(xué)名校選填壓軸好題匯編02(解析版)_第4頁
2025年新高考數(shù)學(xué)名校選填壓軸好題匯編02(解析版)_第5頁
已閱讀5頁,還剩79頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長方體ABCD-ABCD中,AB=BC=2,AA=、2,O故直線AB與l的夾角的正弦值的最小值為.2.(湖南省長郡中學(xué)2024-2025學(xué)年高三上學(xué)期第一次調(diào)研考試數(shù)學(xué)試題)已知函數(shù)f(x(=2sin(ωx+φ((ω>0,|φ|<對(duì)于任意的x∈R,f(x+(=f(-x(,f(x(+f(-x(=0都恒成11A.3B.9C.3或9,因此0<ω≤10.2-k1<所以,此時(shí)f(x(=2sin(3x+(,因,k<所以,此時(shí)f(x(=2sin(9x-(,因?yàn)?<9x-3.(湖南省長沙市六校2025屆高三九月大聯(lián)考數(shù)學(xué)試卷)已知f(x(的定義域?yàn)镽,f(x+y(+f(x-y(=A.B.【解析】由題意知,函數(shù)f(x(的定義域?yàn)镽,f(x+y(+f(x-y(=3f(x(f(y(,且f(1(=令x=1,y=0,得f(1+0(+f(1-0(=3f(1(f(0(,所以f(0(=令x=0,得f(0+y(+f(0-y(=3f(0(f(y(,所以f(-y(=f(y(,所以f(x(是偶函數(shù),令y=1,得f(x+1(+f(x-1(=3f(x(f(1(=f(x(①,所以f(x+2(+f(x(=f(x+1(②,由①②知f(x+2(+f(x-1(=0,所以f(x+3(+f(x(=0,f(x+3(=-f(x(,所以f(x+6(=-f(x+3(=f(x(,所以f(x(的一個(gè)周期是6,由②得f(2(+f(0(=f(1(,所以f(2(=-,同理f(3(+f(1(=f(2(,所以f(3(=-,又由周期性和偶函數(shù)可得:f(4(=f(-2(=f(2(=-,f(5(=f(-1(=f(1(=,f(6(=f(0(=所以f(1(+f(2(+f(3(+?+f(6(=0,224.(山東省濟(jì)南市2025屆高三上學(xué)期開學(xué)摸底考試數(shù)學(xué)試題)設(shè)x1<x2<x3<x4<x5,隨機(jī)變量ξ1取值x1,x2,x3,x4,x5的概率均為0.2,隨機(jī)變量ξ2取值,,,,的概A.E(ξ1(>E(ξ2(B.E(ξ1(<E(ξ2(C.D(ξ1(>D(ξ2(D.D(ξ1(<D(ξ2(55故E(ξ1(=E(ξ2(,故A、B錯(cuò)誤;設(shè)E(ξ1(=E(ξ2(=m,=-5m2,,(x1-x2(2=x+x-2x1x2>0,故4x1x2<2(x+x(,5.(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)在正四棱錐P-A1B1C1D1中,PB1丄PD1.用一個(gè)平行于底面的平面去截該正四棱錐,得到幾何體ABCD-A1B1C1D1,AB=1,A1B1=2,則幾何體ABCD-A1B1C1D1的33解得:a=2,所以PO1=PB-B1O2=22-(2(2=2,又因?yàn)橛靡粋€(gè)平行于底面的平面去截該正四棱錐,得到幾則幾何體ABCD-A1B1C1D1為正四棱臺(tái),所以O(shè)O1==,所以幾何體ABCD-A1B1C1D1的體積為:6.(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)已知函數(shù)f(x(=tan(ωx+(ω+,則由題意可得y=tanx-1在x∈,ωπ+即可得+3π<ωπ+≤+4π,7.(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)已知函數(shù)f(x(=2x+2-x+cosx+x2A.b<a<cB.b<c<aC.c<a<bD.c<b<a【解析】因?yàn)閒(x(=2x+2-x+cosx+x2,所以函數(shù)定義域?yàn)镽,f(-x(=2-x+2x+cos(-x(+(-x(2=2x+2-x+cosx+x2=f(x(,所以函數(shù)f(x(為偶函數(shù),故a=f(-3(=f(3(,當(dāng)x>0時(shí),f(x(=(2x-2-x(ln2+(2x-sinx(=g(x(,所以g(x(=(2x+2-x((ln2(2+(2-cosx(,x+2-x((ln2(2>0,2-cosx>0,所以g(x(>0,所以g(x(在(0,+∞(單調(diào)遞增,故g(x(>g(0(=0即f(x(>0,44所以f(x(在(0,+∞(單調(diào)遞增,又e<3<π,所以f(e(<f(3(<f(π(,所以b<a<c.8.(福建省名校聯(lián)盟2024-2025學(xué)年高三上學(xué)期9月質(zhì)量檢測(cè)數(shù)學(xué)試題)已知函數(shù)f(x(=lnx-A.(0,1(B.(1,+∞(C.(0,1[D.[1,+∞(【解析】令h(x(=2f(x(+g(x(=2lnx-2(a+1(x+ax2+a+2(x≥1(,若a≤0,則h(x(≤0在[1,+∞(上恒成立,則h(x(在[1,+∞(上單調(diào)遞減,則h(x(≤h(1(=0,不符合題意.則h(x(≤h(1(=0,不符合題意.若a≥1,則h(x(≥0在[1,+∞(上恒成立,則h(x(在[1,+∞(上單調(diào)遞增,即h(x(≥h(1(=0,符合題意.9.(福建省福州第一中學(xué)2024-2025學(xué)年A.B.C.D.55連接AB,BE,則∠BDE=,BD=DE=M,由余弦定理得BE2=M2+M2-2M2cos=3M2,由上可知,x軸垂直于BD,DE,又BD∩DE=D,BD,DE?平面BDE,所以x軸垂直于平面BDE,又AE?x軸,所以因?yàn)锽E?平面BDE,所以AE⊥BE,因?yàn)閒(x(的周期=6,所以AE=CD=3,10.(福建省福州第一中學(xué)2024-2025學(xué)年高三上學(xué)期開學(xué)質(zhì)檢考試數(shù)學(xué)試題)已知f(x)=2x+2-x+cosx+x2,c=f(4ln3π)A.a<b<cB.b<c<aC.c<a<bD.b<a<c(x)=(2x-2-x(ln2-sinx+2x,設(shè)s(x)=(2x-2-x(ln2-sinx+2x,s/(x)=(2x+2-x(ln22-cosx+2>0,故在(0,+∞(上s(x)為增函數(shù),故s(x)>s(0(=0即f/(x(>0(x>0),故f(x(在(0,+∞(上為增函數(shù),設(shè)u(x(=,x>e,則u/(x(=<0,故u(x(在(e,+∞(上為減函數(shù),所以4lnπ3>πl(wèi)n43>0,故f(4lnπ3(故f(4ln3π(>f(4lnπ3(,故c>a,11.(安徽省六校教育研究會(huì)2025屆高A.B.C.D.66也畫出y=2sin(ωx-的草圖,函數(shù)y=sin與y=2sin(ωx12.(安徽省六校教育研究會(huì)2025屆高三上學(xué)期入學(xué)考試數(shù)學(xué)試卷)已知函數(shù)f(x(的定義域?yàn)镽,且f(x+2(+f(x(=f(12(,f(-3x+1(為奇函數(shù),且f(,則kf(k-)A.-11B.-D.0【解析】由于f(x+2(+f(x(=f(12(,所以f(x+4(+f(x+2(=f(12(,則f(x+4(=f(x(,因此T=4.令x=0,則f(2(+f(0(=f(12(=f(0(,故f(2(=0.由于f(-3x+1(為奇函數(shù),故-f(-3x+1(=f(3x+1(,即f(x+1(+f(-x+1(=0,故f(x(關(guān)于點(diǎn)(1,0(對(duì)稱.由題,f(x+2(+f(x(=f(12(=0,∴f(x+2(=-f(x(=f(2-x(,故f(x(關(guān)于直線x=2對(duì)稱,因此kf(k-(=0.13.(2025屆安徽皖南八校高三8月摸底考試數(shù)學(xué)試題)已知函數(shù)f(x(的定義域?yàn)镽,y=f(x(+ex是偶函數(shù),y=f(x(-3ex是奇函數(shù),則f(ln3(的值為()B.3C.則f(-x(+e-x=f(x(+ex,即f(x(-f(-x(=e-x-ex①,77又因?yàn)楹瘮?shù)y=f(x(-3ex為奇函數(shù),則f(-x(-3e-x=-f(x(+3ex,即f(x(+f(-x(=3ex+3e-x②,聯(lián)立①②可得f(x(=ex+2e-x,所以f(ln3(=eln3+2e-ln3=.14.(2025屆安徽皖南八校高三8月摸底n=2+d1+d2+?+dn-1,其中di∈{1,3},故n+1≤an≤3n-1,且{an{奇偶交錯(cuò)出現(xiàn).ii又Sn=2n+(n-1)d1+(n-2)d2+?+dn-1,依次對(duì)諸di(至少一個(gè))調(diào)整為3后+2≤Sn≤+2+2×2+2×3+?+2(n-1),即+2≤Sn≤,故n+1≤an≤3n-1,且{an{奇偶交錯(cuò)出現(xiàn).ninin=2n+(n-1(d1+(n-2(d2+?+dn-1,i=1(i=1,2,?,n-1(時(shí),Sn=;考慮di=1(i=1,2,?,n-1(時(shí),di調(diào)整為3,則對(duì)應(yīng)的Sn可增+2≤Sn≤+2+2×2+2×3+?+2(n-1(,8816.(安徽省安徽師范大學(xué)附屬中學(xué)2025屆高三上學(xué)期9月第一次測(cè)試數(shù)學(xué)試題)F1,F2是雙曲線E:-+5M2=λM(λ∈R(,則雙曲線E的離心率為()A.B.C.D.5M2=M,:MQ是以3|MF1|,5|MF2|為鄰邊的平行四邊形的一條對(duì)角線,:以3|MF1|,5|MF2|為鄰邊的平行四邊形為菱形,:3|MF1|=5|MF2|,2=4:雙曲線E的離心率e==4.2{an{的前n項(xiàng)和為Sn,a1=1,nan+1=+cos4θ((n+1(an,則使得Sn+<成立的n的最大值為()A.2B.3C.4D.5992θ+sinθ-、3=0,解得sinθ=或sinθ=-(舍去),則cos2θ=1-2sin2θ=,cos4θ=可得nan+1=+cos4θ((n+1(an=(n+1(an,則=,++ 93n+=--n-13nn++ 93n+=--n-13nn則Sn+23n=-4×n-2<,整理可得3n-2<25,則n-2≤2,解得n≤4,所以n的最大值為4.A.B.3C.2設(shè)點(diǎn)M(x0,y0(,則直線MA,MB的斜率分別為kMA=,kMB=-,因?yàn)閗MA=kCA,所以kMB=kBD=-kCB,21.(浙江省名校協(xié)作體2024-2025學(xué)年高三上學(xué)期開學(xué)考試數(shù)學(xué)試題)正三棱臺(tái)ABC-A1B1C1中,-l-D的平面角為θ,則cosθ的最小值為()A.0B.E于點(diǎn)F,四邊形ABB1A1為等腰梯形,D,E分別為AB,A1B1的中點(diǎn),則有C1E⊥A1B1,ED⊥A1B1,C1E∩ED=E,C1E,ED?面EDCC1,所以A1B1⊥面EDCC1,DF,CF?面EDCC1,得DF⊥l,CF⊥l,則∠CFD為二面角C-l-D的平面角,由對(duì)稱性可知當(dāng)FC=FD時(shí),∠CFD最大,作FH⊥CD,AB=2A1B1=23,AA1=2,點(diǎn)D為棱AB中點(diǎn),則CD=3,22.(江蘇省海安高級(jí)中學(xué)2025屆高三上學(xué)期期初檢測(cè)數(shù)學(xué)試卷)已知a>0,b>0,log9a=log12b=a+b(,則=()5-1225-122-13-1D.9a=log12b=log16(a+b(=k,k=442k+-1k=442k+-1+5k=-15.A.a<c<bB.c<b<aC.b<a<cD.a<b<c將其沿對(duì)角線AC折成直二面角.設(shè)E為AD的中點(diǎn),F(xiàn)為BC的中點(diǎn),將△EOF繞直線EF旋轉(zhuǎn)一周A.B.C.πD.又平面DAC∩平面BAC=AC,DO?平面DAC,則可得OE=DC=1,OF=AB=1,過E作EH⊥AC于點(diǎn)H,連接HF,又HF?平面BAC,∴EH⊥HF在Rt△EHF中,EF=又OE=OF=1,∴cos∠EOF=,∴∠EOF=120°將△EOF繞直線EF旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體為兩個(gè)同底面的圓錐組合體,52=2△EOG=(OE+EG+GF+OF(r,在同一個(gè)部分的概率為()A.2概率為所以這2個(gè)點(diǎn)不在同一個(gè)部分的概率為P=1-P1=1-=.則AO=OC?tan∠ACB3tan2/,1-tan2∠OCO/>0,值可以是()【解析】設(shè)AD=2r,AB=2m,CD=2n,且n≥、2m,故BD=AB2+AD2=2m2+r2,AC=CD2+AD2=2n2+r2,2-r2=n,e2=22-r2=m,、n2+r2、n2+r2、m2+r2故1-1=r21-1=r228.(多選題)(湖南省長郡中學(xué)2024-2025學(xué)年高三上學(xué)期第一次調(diào)研考試數(shù)學(xué)試題)對(duì)于任意實(shí)數(shù)x,,c=-log0.50.3-b|+a+b=|b-c|+b+c,即|a-b|-|b-c|=c-a,若a≤b,c≤b,可得|a-b|-|b-c|=c-a,符合題意,若a≤b,c>b,可得|a-b|-|b-c|=2b-a-c,不符合題意,若a>b,c≤b,可得|a-b|-|b-c|=a-c,不符合題意,若a>b,c>b,可得|a-b|-|b-c|=c+a-2b,不符合題意,0.1=(1-0.1(e0.1,(將0.9轉(zhuǎn)化為1-0.1,方便構(gòu)造函數(shù))構(gòu)造函數(shù)f(x(=(1-x(ex,x∈[0,1(,則f/(x(=-xex,因?yàn)閤∈[0,1(,所以f/(x(≤0,f(x(單調(diào)遞減,因?yàn)閒(0(=1,所以f(0.1(<1,-ln=-ln-1=+ln=+ln(1-0.1(,構(gòu)造函數(shù)h(x(=+ln(1-x(,x∈[0,1(,則h/(x(=--=,x(1-x(>0,令ω(x(=(1-x(2-ex,則ω/(x(=-2(1-x(-ex,所以ω(x(≤0,即h/(x(≤0,h(x(單調(diào)遞減,又h(0(=0,所以h(0.1(<0,即0.09-ln=0.1×0.9-ln-1=(1-0.9(×0.9+ln0.9,構(gòu)造函數(shù)g(x(=(1-x(x+lnx,x∈(0,1[,則g/(x(=1-2x+==,中國結(jié)的意義在于它所顯示的情致與智慧正是漢族古老文明中的一個(gè)側(cè)面,也是數(shù)學(xué)奧秘的游戲呈現(xiàn).它有著復(fù)雜曼妙的曲線,卻可以還原成最單純的二維線條.其中的八字結(jié)對(duì)應(yīng)著數(shù)學(xué)曲線中的雙紐線.曲線C:(x2+y2)2=9(x2-y2)是雙紐線,則下列結(jié)論正確的是()A.曲線C的圖象關(guān)于y=x對(duì)稱【解析】對(duì)于A項(xiàng),把(y,x)代入(x2+y2顯然點(diǎn)(y,x)不滿足雙紐線方程,由題意可知,-3≤x≤3,(y=kx(y=kx30.(多選題)(湖南省長沙市六校2025屆高三九月大聯(lián)考數(shù)學(xué)試卷)已知函數(shù)f(x(=x2-2lnx,則下列選A.函數(shù)f(x(的極小值點(diǎn)為x=1B.f(、e(>fC.若函數(shù)g(x(=f(|x|(-t有4個(gè)零點(diǎn),則t∈(1,+∞(D.若f(x1(=f(x2((x1≠x2(,則x1+x2<2【解析】由題意可知:f(x(的定義域?yàn)?0,+∞可知f(x(在(0,1(內(nèi)單調(diào)遞減,在(1,+∞(內(nèi)單調(diào)遞增,e所以(<f((,故B錯(cuò)誤;對(duì)于選項(xiàng)C:令g(x(=f(|x|(-t=0,可得f(|x|(=t,可知函數(shù)g(x(=f(|x|(-t有4個(gè)零點(diǎn),即y=f(|x|(與y=t有4個(gè)交點(diǎn),且y=f(|x|(的定義域?yàn)?-∞,0(∪(0,+∞(,且f(|-x|(=f(|x|(,可知y=f(|x|(為偶函數(shù),且當(dāng)x>0時(shí),y=f(|x|(=f(x(原題意等價(jià)于當(dāng)x>0時(shí),y=f(x(與y=t有2個(gè)交點(diǎn),對(duì)于選項(xiàng)D:設(shè)g(x(=f(2-x(-f(x(=2lnx-2ln(2-x(+4-4x,x∈(0,1(,即f(2-x(<f(x(,x∈(0,1(,若f(x1(=f(x2((x1≠x2(,不妨設(shè)0<x1<1<x2,則f(2-x1(<f(x1(=f(x2(,且2-x1>1,x2>1,且f(x(在(1,+∞(內(nèi)單調(diào)遞增,31.(多選題)(山東省濟(jì)南市2025屆高三上學(xué)期開學(xué)摸底考試數(shù)學(xué)試題)已知函數(shù)f(x(=x3-3x2+ax-A.f(x(至少有一個(gè)零點(diǎn)B.存在a,使得f(x(有且僅有一個(gè)極值點(diǎn)C.點(diǎn)(1,-1(是曲線y=f(x(的對(duì)稱中心D.當(dāng)a≤0時(shí),f(x(在[0,1[上單調(diào)遞減故f(x(在(1,+∞(上必有零點(diǎn),即f(x(至少有一個(gè)零點(diǎn),故A正確;則f/(x(=3x2-6x+a有唯一變號(hào)零點(diǎn),故不存在a,使得f(x(有且僅有一個(gè)極值點(diǎn),故B對(duì)C:f(-x+2(+2=(-x+2(3-3(-x+2(2+a(-x+2(-a+1+2=-x3+6x2-12x+8-3x2+12x-12-ax+2a-a+1+2=-x3+3x2-ax+a-1,有f(x(+f(-x+2(+2=x3-3x2+ax-a+1-x3+3x2-ax+a-1=0,對(duì)D:f/(x(=3x2-6x+a=3(x-1(2+a-3,f/(x(=3(x-1(2+a-3∈[a-3,a[,由故f(x(在[0,1[上單調(diào)遞減,故D正確.C.若曲線C與直線y=kx(k>0)無交點(diǎn),則k≥1>2化簡可得動(dòng)點(diǎn)M的軌跡方程為x2-xy-1=0,將(-x,-y(代入曲線方程可得(-x(2-(-x(?(-y(-1=x2-xy-1=0成立,做出曲線x2-xy-1=0,易知該曲線可表示漸近線為y=x及y軸的雙曲線,B選項(xiàng)錯(cuò)誤;-1=0無解,則1-k=0或4(1-k(<0,、、、y=-2(y=2、即曲線與單位圓交于M,-N(-,2(兩點(diǎn),、33.(多選題)(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)已知定義在R上的函數(shù)f(x(不恒等于0,f(π(=0,且對(duì)任意的x,y∈R,有f(2x(+f(2y(=2f(x+y(f(x-y(,則()A.f(0(=1B.f(x(是偶函數(shù)C.f(x(的圖象關(guān)于點(diǎn)(π,0(中心對(duì)稱D.2π是f(x(的一個(gè)周期【解析】對(duì)于A,根據(jù)題意令x=y,則由f(2x(+f(2y(=2f(x+y(f(x-y(可得f(2x(+f(2x(=2f(2x(f(0(,解得f(0(=1,即A正確;對(duì)于B,令x=-y可得f(2x(+f(-2x(=2f(0(f(2x(=2f(2x(,所以f(2x(=f(-2x(,即可得對(duì)任意的x∈R滿足f(x(=f(-x(,即f(x(是偶函數(shù),所以B正確;對(duì)于C,令x+y=π,則由f(2x(+f(2y(=2f(x+y(f(x-y(可得f(2π-2y(+f(2y(=2f(π(f(π-2y(=即f(x(滿足f(2π-x(+f(x(=0,因此可得f(x(的圖象關(guān)于點(diǎn)(π,0(中心對(duì)稱,即C正確;對(duì)于D,由于f(x(是偶函數(shù),所以滿足f(x-2π(+f(x(=0,即f(x(+f(x+2π(=0,可得f(x-2π(=f(x+2π(,也即f(x(=f(x+4π(,所以4π是f(x(的一個(gè)周期,即D錯(cuò)誤.34.(多選題)(福建省漳州市2025得的第一枚金牌.藝術(shù)體操的繩操和帶操可以舞出類似四角花瓣的圖案,它可看作由拋物線C:y2=A.開口向上的拋物線的方程為B.|AB|=4C.直線x+y=t截第一象限花瓣的弦長最大值為D.陰影區(qū)域的面積大于4如圖,設(shè)直線x+y=t與第一象限花瓣分別交于點(diǎn)M,N,即得M(t+1-2t+1,2t+1-1),N(2t+1-1,t+1-2t+1),=|(u-2)2-1|,(1<u≤3)在拋物線y=x2,(x≥0)上取一點(diǎn)P,使過點(diǎn)P的切線與直線OA平行,1=由y=x=1可得切點(diǎn)坐標(biāo)為P(1,(,因lOA:x-y=0,則點(diǎn)P到直線OA的距離為=于是S△OPA=于是S△OPA=35.(多選題)(福建省名校聯(lián)盟2024-2025學(xué)年高三上學(xué)期9月質(zhì)量檢測(cè)數(shù)學(xué)試題)記△ABC的內(nèi)角A,的周長可能為()-sin2A=±,36.(多選題)(福建省名校聯(lián)盟2024-2025學(xué)年高三上學(xué)期9月質(zhì)量檢測(cè)數(shù)學(xué)試題)已知函數(shù)f(x(=A.f(x(的圖象關(guān)于y軸對(duì)稱B.f(x(的圖象關(guān)于點(diǎn)(-,-對(duì)稱C.f(x(的圖象關(guān)于直線x=對(duì)稱D.x=的極大值點(diǎn)但是f(-x(=sin(-x(+cos(-x(+(-x(=-sinx+cosx-x≠f(x(,所以f(x(不是偶函數(shù),則函數(shù)圖象不關(guān)于y軸對(duì)稱,故A錯(cuò)誤;對(duì)于B:因?yàn)閒(--x(+f(x(=sin(--x(+cos(--x(+(--x(+sinx+cosx+x=-cosx-sinx--x+sinx+cosx+x=-,所以f(x(的圖象關(guān)于點(diǎn)(-,-對(duì)稱,故B正確;對(duì)于C:因?yàn)閒(π-x(=sin(π-x(+cos(π-x(+(π-x(=sinx-cosx+π-x≠f(x(,所以f(x(的圖象不關(guān)于直線x=對(duì)稱,故C錯(cuò)誤;對(duì)于D:因?yàn)閒(x(=sinx+cosx+x,所以f(x(=cosx-sinx+1f-π,上單調(diào)遞增上單調(diào)遞增,所以f(x(在x=處取得極大值,故D正確.37.(多選題)(福建省福州第一中學(xué)2024-2025學(xué)年高三上學(xué)期開學(xué)質(zhì)檢考試數(shù)學(xué)試題)拋物線C:x2=下列結(jié)論正確的是()B.拋物線的準(zhǔn)線方程為:y=-1C.當(dāng)直線l過焦點(diǎn)F時(shí),以AF為直徑的圓與x軸相切=y0+=y0+1,整理得x2-4kx-4m=0,Δ=(-4k(2+16m>0,即k2+m>0,所以xA+xB=4k,xAxB=-4m,所以|AF|+|BF|=yA+1+yB+1=yA+yB+2=4k2+2m+2,g(x(的定義域?yàn)镽,g(x(的導(dǎo)函數(shù)為g/(x(,且f(x(+g/(x(=5,f(x-1(-g/(5-x(=5,若g(x(為偶A.f(0(=5f(n(=10120D.若f(x(為偶函數(shù),則滿足題意的f(x(唯一,滿足題意的g(x(不唯一對(duì)B,由f(x(+g/(x(=5,f(x-1(-g/(5-x(=5,得f(4-x(-g/(x(=5,所以f(4-x(+f(x(=10,所以f(1(+f(3(=10,f(2(=f(4(=5,又f(x(=5-g/(x(=5+g/(-x(=f(x+4(,所以f(x(是周期為4的函數(shù),g/(x(也是周期為4的函數(shù),所以f(1(+f(2(+f(3(+?+f(2024(=20×506=10120,故B對(duì);由f(4-x(+f(x(=10,y=f(x(的圖象關(guān)于(2,5(對(duì)稱且f(2(=5,可知f(x(在[2,4-x0(單調(diào)遞減,在(4-x0,4[單調(diào)遞增,又f(x(的周期為4,所以f(x(在(-x0,0[單調(diào)遞增,所以g/(x(在(-x0,0[單調(diào)遞減,在[0,x(是周期為4的函數(shù),對(duì)D,若f(x(為偶函數(shù),由于g/(x(是奇函數(shù),f(x(+g/(x(=5,則f(-x(+g/(-x(=5,即f(x(-g/(x(=5,所以f(x(=5,g/(x(=0,所以f(x(唯一,g(x(不唯伯努利描述了如圖的曲線,我們將其稱為伯努利雙紐線,定義在平面直角坐標(biāo)系xOFA.雙紐線C的方程為(x2+y2(2=2(x2-y2(B.-≤y0≤(x-1)2+y2=1,化簡可得(x2+y2(2=2(x2-y2(,故A正確;,所以-≤y0≤,故B正確;=1,所以P在線段F1F2的中垂線即x=0上,×1+y2=12+2PF2+22+22-22+22-2PF2=4,2PFPF2+4=PF12PFPF2+4=PF1+PF2,PF2=1+cos∠F1PF≤2,40.(多選題)(安徽省六校教育研究會(huì)2025屆高三上學(xué)期入學(xué)考試數(shù)學(xué)試卷)已知函數(shù)f(x(=ex,g(x(=A.函數(shù)f(x(的圖像與函數(shù)y=x2的圖像有且僅有一個(gè)公共點(diǎn)B.函數(shù)f(x(的圖像與函數(shù)g(x(的圖像沒有公切線D.當(dāng)m≤2時(shí),f(x(>g(x+m(恒成立x2x2x2x22所以在x=2時(shí)m(x(取最小值m(2(=>1,即ex>x2,所以當(dāng)x>0時(shí),函數(shù)f(x(與函數(shù)y=x2的圖像當(dāng)x∈(0,+∞(時(shí),令M(x(=xex-1,則M/(x(=(x+1)ex>0在區(qū)間即M(x(=xex-1在區(qū)間(0,+∞(上單調(diào)遞增,又M(0(=-1<0,M(1(=e-1>0,所以u(píng)(x(在(-∞,x0(上單調(diào)遞減,在(x0,+∞(上單調(diào)遞增,且u(x0(=-x0-0<0,B錯(cuò)誤,令k(x(=-lnx,則k/(x(=-2-<0,所以k(x(在(0,+∞(上單調(diào)遞減,又k(1(=1>0,k(2(=-ln2<0,x0(=0,則φ(x(在(0,x0(上單調(diào)遞增,在(x0,+∞(上單調(diào)遞減,對(duì)于選項(xiàng)D,G(x)=ex-x-1,則G/(x)=ex-1,令g(x)=x+1-ln(x+2(,則g/(x)=1-=>0在區(qū)間(-2,+∞(上恒成立,又g(-1)=-1+1-ln(-1+2(=0,所以x+1≥ln(x+2(,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),所以ex≥x+1≥ln(x+2(≥ln(x+m(,且等號(hào)不能同時(shí)取到,故選項(xiàng)D正確.41.(多選題)(2025屆安徽皖南八校高三8月摸底考試數(shù)學(xué)試題)設(shè)函數(shù)f(x(=(x-a)2(x-4(,定義域?yàn)锳.f(x(的極大值為0B.點(diǎn)(2,-2(是曲線y=f(x(的對(duì)稱中心C.直線y=9x-4與函數(shù)f(x(的圖象相切D.若函數(shù)f(x(在區(qū)間(m,4(上存在最小值,則m的取值范圍為(0,3(【解析】對(duì)于A,由f(x(=(x-a)2(x-4(≥0,解得x≥4或x=a,所以a=1,f(x(=(x-1)2(x-4(,則f/(x(=2(x-1((x-4(+(x-1)2=3(x-1((x-3(,可知f(x(在(-∞,1(,(3,+∞(上單調(diào)遞增,在(1,3(上單調(diào)遞減,所以函數(shù)f(x(的極大值為f(1(=0,故A正確;對(duì)于B,因?yàn)閒(2+x(+f(2-x(=(x+1)2(x-2(+(1-x)2(-x-2(=-4,故B正確;(y0=9x0-4(y0=9x0-4所以直線y=9x-4與函數(shù)f(x(的圖象相切于(0,-4(,故C正確;對(duì)于D,由A選項(xiàng)知f(x(在(-∞,1(,(3,+∞(上單調(diào)遞增,在(1,3(上單調(diào)遞減,又f(3(=-4,令f(x(=-4,解得x=0或3,函數(shù)f(x(在區(qū)間(m,4(上存在最小值,42.(多選題)(2025屆安徽皖南八校高三8月摸底考試數(shù)學(xué)試題)已知曲線C:(x2+y2-2(2=4+8xyP(x0,y0(為曲線C上任意一點(diǎn),則()A.曲線C的圖象由兩個(gè)圓構(gòu)成B.x+y的最大值為2、2y0+2x0+4C.的取值范圍為-1D.y0+2x0+4+y2-2(2=4+8xy,得(x2+y2(2-4(x2+y2(+4=4+8xy,即(x2+y2(2-4(x+y)2=0,即(x2+y2+2x+2y((x2+y2-2x-2y(=0,所以x2+y2+2x+2y=0或x2+y2-2x-2y=0,對(duì)于B中,由x+y表示點(diǎn)(x0,y0(到原點(diǎn)距離的平方,-4,-2(且與圓N相切的直線方程為y=k(x+4(-2,則點(diǎn)N到該直線的距離d1=|5k-3|=2,解得k1=1,k2=71+k223,即圖中直線AC的斜率為1,可得直線AC的方程為y點(diǎn)M到直線AC的距離d2=2,則直線AC與圓M相切,設(shè)過點(diǎn)A且與圓M相切的直線方程為y=k/(x+4(-2,則點(diǎn)M到該直線的距離d2=|3k/-1|=2,解得k=1,k=1+(k/(2=a2(a≥0且a為常數(shù)),化簡可得曲線C:x2+y2+c2=、4c2x2+a4,則 ()2=a2對(duì)于B,以-x代x,得(-x)2+y2+c2=4c2(-x)2+a4,得x2+y2+c2=4c2x2+a4,所以曲線關(guān)于y軸對(duì)-y代y,得x2+(-y)2+c2=、4c2x2+a4,得x2+y2+c2=4c2x2+a4,所以曲線關(guān)于x軸對(duì)稱,以-x代x,-y代y,得(-x)2+(-y)2+c2=4c2(-x)2+a4,得x2+y2+c2=4c2x2+a4,所以曲線關(guān)于原2+y2+a2=、4a2x2+a4,得y2=、4a2x2+a4-x2-a2≥0,解得x2≤2a2,所以|OP|2=x2+y2=、4x2a2+a4-a2≤、4?2a2?a2+a4-a2=2a2,P=(-c-x,-y),P—2=(c-x,-y),所以x2-2+y2=0,所以x2+y2=c2,44.(多選題)(安徽省多校聯(lián)考202A.存在四個(gè)點(diǎn)P,使得PF1⊥PF2—→—→++2=4,b2=2則=-3×,解得m=-,又-2<m<2,所以存在這樣的點(diǎn)P,故B正確;P2=(-、2-m)(、2-m)+(-n)(-n)=m2+n2-2=2-n2,22對(duì)于D:=+≥2×=14,+對(duì)于D:=+≥2×=14,PF2|+A.y=f(x(圖像關(guān)于點(diǎn)(π,0(中心對(duì)稱B.y=f(x(圖像關(guān)于直線x=對(duì)稱C.f(x(的最大值為23【解析】A:因?yàn)閒(π+x(=cos(π+x(sin[2(π+x([=-cosxsin2x,f(π-x(=cos(π-x(sin[2(π-x([=cosxsin2x,所以f(π+x(=-f(π-x(,B:因?yàn)閒+x(=cos+x(sin2f-x(=cos-x(sin2-x(=sinxsin2x,所以f+x(=f-x(,C:f(x(=cosxsin2x=2sinx.cos2x=2sinx(1-sin2x)=-2sin3x+2sinx,設(shè)sinx=t(-1≤t≤1),所以g(t(=-2t3+2t→g/(t(=-6t2+2=-6(t+t-,當(dāng)-1<t<-時(shí),g/(t(<0,g(t(單調(diào)遞減,當(dāng)-<t<時(shí),g/(t(>0,g(t(單調(diào)遞增,當(dāng)<tt(<0,g(t(單調(diào)遞減,當(dāng)t=時(shí),函數(shù)有極大值,D:因?yàn)閒(-x(=cos(-x(sin[2(-x([=-cosxsin2x=-f(x(,所以f(x(是奇函數(shù),因?yàn)閒(x+2π(=cos(x+2π(sin[2(x+2π([=cosxsin2x=f(x(,所以f(x(是周期函數(shù),因此本選項(xiàng)結(jié)論正確,46.(多選題)(河北省部分地區(qū)2025屆高三上學(xué)期9月摸底考試數(shù)學(xué)試卷)已知數(shù)列{an}滿足an+1=2anA.{an}的通項(xiàng)公式為an=3×2n-1-nB.Tn=3×2n-3-C.S2n<0D.數(shù)列{n+1=2an+n-1n-1-n,A正確;3+…+an=3-1+3×2-2+3×22-3+…+3×2n-1-n2+…+3×2n-1-=3×-=3×2n-3-,B正確;-Tn=3×2n+1-3-3×2n-3-=3×2n-1-n,47.(多選題)(河北省唐山市2024-2025學(xué)年高三上學(xué)期摸底演練數(shù)學(xué)試題)已知雙曲線C:-=1與直線l:y=kx+t(k≠±2(有唯一公共點(diǎn)M,過點(diǎn)M且與l垂直的直線分別交x軸,y軸于A(m,0(,B(0,n(兩點(diǎn),當(dāng)M運(yùn)動(dòng)時(shí),下面說法正確的有()A.k<-2或k>2B.記點(diǎn)P(k,t(,則點(diǎn)P在曲線C上C.直線l與兩漸近線所圍成的面積為定值D.記點(diǎn)Q(m,n(,則點(diǎn)Q的軌跡為橢圓【解析】對(duì)A,∵雙曲線C:-=1與直線l:y=kx+t(k≠±2(有唯一公共點(diǎn)M,(x2-(x2-y2=1(y=kx+t即(4-k2(x2-2ktx-t2-16=0,則Δ=4k2t2+4(4-k2((t2+16(=0,故k<-2或k>2,故A對(duì);設(shè)直線l與雙曲線的漸近線的交點(diǎn)分別為E,F,直線l與y軸的交點(diǎn)為(0,t(,故直線l與兩漸近線所圍成的面積S=|t|(|xE|+|xF|(=|t||xE-xF|=|t|--=對(duì)D,由A知:聯(lián)立方程得到:(4-k2(x2-2ktx-t2-16=0,又由題意知lAB=-下角A走到右上角B共有種不同的走法;若要求從左下角A走到右上角B的過程中只能在則由卡特蘭數(shù)可知共有C-C=14種不同的走法,連接F2BFB|=2d-2a,2+=|FF2--=0,+1=2a-1,n=cosbn,an+1=2a-1=2cos2bn-1=cosbn+1=cos2bn,T===111?== 1-cos2b1≤≤=2-2025,2026=152.(福建省漳州市2025屆高三畢業(yè)班第一次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題)已知數(shù)列{an{的前n項(xiàng)和Sn=n2n=n2+n,則當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n-(n-1(2-(n-1(=2n,則==n++,又y=x+在(1,3(單調(diào)遞減,在(3,+∞(單調(diào)遞增;故當(dāng)n=3時(shí),n+取得最小值,也即n=3時(shí),取得最小值.=1+=1+/aa+a=4+4b+2a+2a+a=4+4b+2a+2b≥4+2aaf(x(滿足f(x+y(+f(x-y(=2f(x(f(y(,函數(shù)g(x(滿足g(x+y(=g(x(g(y(.若f(2(=-1,g(3(=f(2024((=.【解析】令y=0,得2f(x(=2f(0(f(x(,則f(0(=1或f(x(=0(與f(2令x=y=1,得f(2(+f(0(=2[f(1([2=0,則f(1(=0,則f(x+1(+f(x-1(=0,則f(x+4(=f(x(,則f(2024(=f(0(=1.從而g(f(2024((=g(1(=2.55.(福建省福州第一中學(xué)2024-2025學(xué)年高三上學(xué)期開學(xué)質(zhì)檢考試數(shù)學(xué)試題)已知橢圓方程為+=1(a>b>0),雙曲線方程為-=1(m>0,n>0),若該雙曲線的兩條漸近線與橢圓的四個(gè)交點(diǎn)以及橢圓的兩個(gè)焦點(diǎn)恰為一個(gè)正六邊形的六個(gè)頂點(diǎn),則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論