版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
PublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorized
r-tm
Measuringwelfare
whenitmattersmost
WORLDBANKGROUP
Atypologyofapproachesforreal-timemonitoring
Contents
Introduction7
1MethodsforNowcastingWelfare—WithaFocusonMonetaryPoverty17
1.1NowcastingWelfareUsingSurveyandOtherNon-surveyCovariates18
ConsiderationsRegardingReliableSurvey-and
Non-survey-basedImputation21
SurveyImputationMethodscanbeComplementedwith
DataCollectiontoDealwithMissingAuxiliaryorBaselineData24
LessonsLearntandResources25
1.2NowcastingWelfareUsingGDPGrowth27
ConsiderationsRegardingGDP-basedNowcasting30
Resources33
1.3NowcastingWelfareUsingMicrosimulationsandGeneral
EquilibriumModels33
ConsiderationsRegardingMicrosimulationandGeneralEquilibrium
Models36
Resources37
2HarnessingDataforReal-timeWelfareMonitoring39
2.1RapidSurveyDataCollection40
High-frequencyPhoneSurveys40
RapidFace-to-faceSurveys46
OnlineandMessaging-basedSurveys49
FurtherResources50
2.2GeospatialData52
MainCharacteristicsandExamples52
CaveatsforUsingGeospatialData56
LessonsLearntandResources59
2.3DigitalTraceData62
MainCharacteristicsandExamples62
CaveatsforUsingDigitalTraceData64
LessonsLearntandResources65
3
2.4AdministrativeData67
MainCharacteristicsandExamples67
CaveatsforAdministrativeDataforReal-timeWelfareMonitoring69
LessonsLearntandResources70
3MovingForward:IdentifyingAreasforAdvancement71
References73
Annex1.SummaryofModelsUsedtoUpdatePovertyEstimates95
Annex2.CommonlyUsedMachineLearning(ML)Modelsfor
EstimatingPoverty97
Annex3.SummaryofAllDataSources100
Annex4.NowcastingImpactsofShocks(Vulnerabilityand
DamageFunctions)103
ConsiderationsRegardingDamageFunctions104
Resources105
4MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
Acknowledgments
ThisdraftwaspreparedbyateamfromtheWorldBankPovertyandEquityGlobalPracticeconsistingofKimberlyBolch,MariaEugeniaGenoni,andHenryStemmler.CarlosSabatinoalsoprovidedexcellentinputstothedocument.TheworkwasconductedunderthesupervisionofLuisF.López-Calva(GlobalDirector,PovertyandEquityGP)andBenuBidani(PracticeManager,PovertyandEquityGP).ThisdocumentbenefitedfromconsultationswithmanymembersofthePovertyandEquityGlobalPracticeaswellasotherWorldBankteamswholedthedevelopmentandimplementationofmanyoftheinitiativesreferencedhere.TheteamisparticularlygratefultoMaurizioBussolo,PaulCorral,XimenaDelCarpio,DanielGerszonMahler,CraigHammer,RuthHill,DeanJolliffe,WalkerKosmidou-Bradley,LauraMorenoHerrera,SergioOlivieri,andNobuoYoshidafortheircommentsandadvice.DesignandtypesettingbyReyesWork.
5
Introduction
TimelyInformationonWelfareisCriticalforEffectivePolicymaking
AstheWorldDevelopmentReport2021:DataforBetterLiveshighlights,dataisafoundationalinputforimprovingdevelopmentoutcomesthroughenhancingtheeffectivenessofpolicymaking.However,thedegreetowhichdatacangener-atevaluefordevelopmentdependsonitsquality(WorldBank,2021b).Onecriticalaspectofdataqualityistimeliness.Havingup-to-dateinformationisessentialforpolicymakerstofinetunepoliciesasconditionschange.Inacontemporaryglobalenvironmentmarkedbyheighteneduncertaintyinthefaceofchallengessuchasclimatechange,conflict,andpandemics—theneedformoretimelysourcesofdatatoinformpolicyisparticularlypressing.
Inthecontextofpoliciestoreducepovertyandvulnerability,moretimelyinformationonhouseholdwelfareisneeded.Traditionalmethodsproducemeasuresofhouseholdwelfaretooinfrequentlytomeettheneedsofmanypolicymakers.Officialmeasuresofpovertyarederivedfromhouseholdsurveys,which(eveninidealsettings)areonlyconductedeveryfewyears—giventhefinancialandadministrativecostsinvolved.Inmanysettings,andparticularlyinlow-incomeandfragilecountries,thesesurveysareconductedwithmuchgreaterlags.1However,bycombiningtraditionalsurveys(“baselinedata”)withdifferentmodellingapproachesandalternativesourcesoffrequentlycol-lecteddata(“auxiliarydata”)—itispossibletodevelopmonitoringsystemsthat
1Onaverage,themostrecenthouseholdsurveyintheWorldBank’sPovertyandInequalityPlatform(PIP)isoversixyearsold.Ofthe168countriesinPIP,37percenthavedatathatismorethanfiveyearsoutofdate;ofthe56IDAcountriesinPIP,52percenthavedatathatismorethanfiveyearsoutofdate(September2023PIPUpdate).
7
provideup-to-dateestimatesontheevolutionandstatusofhouseholdwelfare.Investinginthiscapacitytomonitorwelfarein“realtime”isessentialtoboth(i)informnewpolicyactioninthewakeofshocksand(ii)enhancetheadap-tivecapacityofexistingpoliciesascircumstanceschange.Inadditiontoservingasinputstoeffectivepolicymaking,manyoftheapproachesdiscussedcanbeappliedinthecontextofprojectmonitoring.SeeBox1foradiscussiononhowwedefinemonitoringof"welfare"in"realtime".
Methodologicalandtechnologicaladvanceshaveexpandedourabilitytomonitorwelfareinrealtime
Inrecentyears,theWorldBank’sPovertyandEquityGlobalPractice(GP)hasincreaseditscapacitytoprovidemoretimelyinformationonwelfare.Inclosecollaborationwithinternalandexternalpartners,wehaveledeffortsatthecountry(respondingtocontextspecificneeds)andcorporatelevels(relatedtotheglobalmonitoringofpoverty)toimplementabroadrangeofmodellingapproachesandleverageorcollectnewsourcesofhigh-frequencyauxiliarydata.Moreover,thisworkhasincreasinglybenefitedfromfrontiermethodologicalapproaches(forexample,machinelearning)anddatasources(forexample,bigdata)thatcanenhancetheperformanceofexistingmethods.Whileongoingforsometime,theworkwasgreatlyscaledupinthecontextofrecentcrisessuchastheCOVID-19pandemicandclimate-relateddisasters.
Thistypologytakesstockofthegrowingbodyofworkonreal-timewelfaremonitoring,bringingtogetherexistingresourcesandlessonslearnedinoneplace.Itaimstoofferanoverarchingroadmaptohelpteamsnavigatediffer-entapproachesandidentifythebestfitforansweringaspecificquestioninagivencontext.The“bestfit”approachmaydifferacrosssettingsdependingonacountry’sdataecosystemandimplementationconstraints.Thistypologysys-tematizesthedecision-makingprocessbylayingoutthevariousadvantages,disadvantages,underlyingdatarequirements,andassumptionsofdifferentapproaches.WhileprimarilydrawingthePovertyandEquityGP’swork,thetypologyaimstocontextualizereal-timemonitoringwithinabroaderbodyofresearchandtowardsrecentinnovationsinthefield.TheresearchthistypologyhasproducedispartofabroaderglobalinitiativeoftheGPonmoving“TowardsReal-TimeMonitoringofWelfare”andwillbecomplementedbyamoredetailedtechnicalhandbook(forthcoming).
8MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
Box1DefiningReal-timeWelfareMonitoring
Whatdowemeanby“realtime”?Thistypologyusestheterm“realtime”torefertoinformationproducedwithashorterlagthantradi-tionalhouseholdsurveysallow.Forwelfaremonitoring,wheresurveygapsoftenspanmultipleyears,dataproducedwithweekly,monthly,orevenyearlyperiodicitymaybeconsidered“realtime.”Thegoalofthevariousapproachesdescribedinthistypologyistoprovidethemostup-to-datewelfareinformationpossible,giventhefeasibilityconstraintsfordoingsoreliably.Itdoesnotnecessarilyimplyinstan-taneousupdates.
Howdowedefine“welfare”?Weusetheterm“welfare”broadlytoencompassmultipledimensionsofwell-being.Thetypologyhigh-lightsexamplesofwelfaremonitoringacrossarangeofdimensionswithafocusonmonitoringmonetarypovertyatthenationallevel,reflectingtheextensiveworkproducedbythePovertyandEquityGPonthisaspectofwell-being.
Monetarypovertyisastateofdeprivationcharacterizedbyalackofsufficientincomeorfinancialresourcestomeetbasicneeds,suchasfood,shelter,clothing,andhealthcare.Itistypicallymeasuredbycom-paringanindividual’sorhousehold’sincomeorconsumptionagainstadefinedpovertythresholdorpovertyline,withthosebelowthethresholdconsideredmonetarilypoor.
Monetarypovertymeasurementisdataintensiveandchallengingindata-deprivedcontexts.Insomecases,directlymeasuringotherdimensionsofwelfare(forexample,foodsecurity,employment,hous-ing,education)maybeeasierandequallyinsightfulforunderstandingchangesinindividualwell-being.
9|IntroductIon
Part1:Methods
Analyticalmodelsto
leveragemicro,macro,andbigdatatoupdatepovertyandotherwelfaremeasures
ATypologyinTwoParts:MethodsandData
Thistypologyisorganizedintwoparts.Thefirstpartfocusesonmethods,map-pingoutanalyticalmodelsthatleveragemicro,macro,andbigdatatonowcastpovertyandotherwelfaremeasures.Thesecondpartfocusesondata,listingoptionstocollecthigh-frequencydataorbetterharnessexistingsources.Mostapproachesrequireastrategiccombinationofboth—withmodelsrequiringhigh-frequencydataasakeyinput(Figure1).
Figure1Real-timewelfaremonitoringrequiresacombinationofmodelingandhigh-frequencydata
Part2:Data
Effortsforthecollectionofnewdataandbetterharnessingofexistingdata
Notably,mostapproachesrelyonhavingrecentbaselinedataasaprecondi-tion(Box2).Inthissense,theseapproachesarenotmeanttobeasubstituteforinvestingintraditionalsurveys(suchashouseholdbudgetsurveysorcensuses);infact,havingarelativelyrecentbaselinesurveyisacriticalinputtoensurethequalityandaccuracyofthemodelinganddatacollectionmethodscoveredinthistypology.Whenthisisnotthecase,thefeasibilityofreal-timemonitoringmaybelimited,andthecollectionofnewbaselinedatamayberequired.
10MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
Box2BuildingonaStrongFoundation:BaselineDataisaPrerequisiteforReal-timeMonitoring
Methodsforimputingpovertyandhigh-frequency“auxiliarydata”arenotyetsubstitutesfortraditionalhouseholdsurveys,whichremainthefoundationofreliablewelfareestimates.Afullsurveywithcom-prehensivewelfareinformation(suchasahouseholdbudgetsurvey)orpopulationinformation(suchasacensus)isoftenaprerequisitetoeffectivelyapplytheapproachesdescribedhere.
Figure2showshowtothinkaboutthesedifferentdatasetsandhowtheytogetherfeedintomodelstomonitorwelfareinreal-time.Thistypologyreferstothisfoundationaldataas“baselinedata.”However,inthelanguageofmachinelearningitcanalsobethoughtofas“train-ingdata.”Trainingdataservesapivotalrole,providingtheunderlyinginformationnecessaryformodelstolearnpatterns,classifydata,andmakepredictions.Thequalityandquantityoftrainingdatasignifi-cantlyimpactstheperformanceandaccuracyofthealgorithm.Iftrain-ingdataonwelfareisnon-existentortoooutofdate,thesemethodswillbeunreliable.
Themethodsanddatasourcesdiscussedinthistypologyshouldbeseenascomplementarytoratherthansubstitutesfortraditionalsur-veys.Assuch,effortstoadvancethereal-timemonitoringofwelfaregreatlydependoncontinuedinvestmentsinclosingfoundationaldatagaps.TheWorldBankhaslongbeenworkingwithcountrypartnerstoinvestinthemodernizationofnationalstatisticalsystems.Atthegloballevel,thisworkisbeingledbytheGlobalSolutionsGrouponDataforPolicy.Thisincludesanimportantefforttoclosepoverty-relateddatagaps,includingthroughtheimplementationofmorefrequenthouse-holdsurveys.Whilemuchprogresshasbeenmadeinrecentyears,thereisstillalongwaytogo.
11|IntroductIon
Figure2Theingredientsforreal-timewelfaremonitoring
Surveyornon-surveyimputation
Anothermicrosurvey
(LFS,DHS,specially
collectedsurvey)
Macrodata(e.g.,GDP)
Bigdata(e.g.,geospatial,admin,digitaltrace)
collecteddatawithwelfareinformation)
Baselinedata
Datawithwelfare
information(e.g.,budgetsurveyorspecially
GDP-growthmodelsMicrosimulations
Auxiliarydata
Model
PartI:Methods
Thisportionofthetypologyprovidesanoverviewofvarioustypesofmethodsthatcanbeusedtoimputeorpredictwelfarein“realtime”.Thesemethodsuti-lizetimelyinformationfrom“auxiliarydata”sources(suchasmicrosurveys,mac-roeconomicstatistics,orotherbigdatasources)andmodelrelationshipswithvariablesinolderbaselinedatatoestimatemissingdatapoints.
Figure3providesanoverviewofmethodsofreal-timemonitoringfordiffer-entusecases.Themaintypesofmethodsdiscussedinthistypologyarecovari-ate-basednowcasting,GDP-basednowcasting,andmicrosimulationmodels.Researchershaveallthesemethodsattheirdisposalwhentheobjectiveistoobtainanupdatedpoverty-ratenowcast.GDP-basednowcastingneedstobemodifiedtocapturedifferencesacrossincomedistribution,whiletheothermethodsincorporatedistributionsensitivenowcasts.Whenresearchersaimtoincorporatedifferentmechanismsandindirecteffects,theyneedtorelyonmicrosimulationmodels.Finally,microsimulationmodelsandrelatedvulner-abilityfunctionsareusefulforupdatingestimatestoaccountfortheimpactsofshocks.Covariate-basednowcastingcanalsoprovideestimatesofshock
12MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
impacts,buttypicallyonlywhencombinedwithdatacollectionefforts,whicharediscussedinfurtherdetailinpart2ofthistypology.
Figure3Methodsforreal-timemonitoringfordifferentusecases
UsecaseMethods
Distribution-
Poverty-ratenowcast
GDP-poverty
elasticity
(section1.2)
Covariate-basednowcasting(section1.1)
scaling
(section1.2)
Micro-simulation
(section1.3)
Estimatesalongtheincomedistribution
Canincorporateassumptionsaboutdistributionalchanges
Incorporateand
understandmecha-
nismsorindirecte?ects
Vulnerability
analysis
(Appendix4)
Collectionofex-postdata (section2.1)
Nowcastingchangesinwelfareaftershocks
Harnessingdata(section2)
Monitorproxyorleadingindicatorsforwelfare
Ultimately,choosingbetweenthevariousmethodswilldependontheusecaseandtoalargeextentontheunderlyingdatarequirementsandthescaleofanalysis(forexample,subnational,national,regional,global).Moreover,implementingthesemethodsrequiresdifferentinputsintermsofskills,time,andfinancialresources.Dependingontheconstraintsthatateamfacesinagivencontext,differentapproachesmaybebettersuitedtotherealitiesontheground.Thistypologyfeaturesseveraldecisiontreestohelpusersthinkthroughwhichmethod(s)arebettersuitedtodifferentcontextsandobjectives.
PartII:Data
Thetimelinessofwelfareestimatesproducedbythemethodsdependsentirelyonthetimelinessoftheauxiliarydatainputs.Reliable,high-frequencyandup-to-datedatasourcesarecriticalforanyapproachtomonitorwelfareinrealtime.PartIIofthistypologyfocusesontwokeyefforts:(i)collectingnewhigh-fre-quencydata,and(ii)betterharnessingexistingsourcesofhigh-frequencydata(Figure4illustratesafewexamples).
13|IntroductIon
Figure4Dataforreal-timemonitoring:Collectingandharnessinghigh-frequencydata
CollectingNewData
ExistingData
Sources
Rapid
surveys
Geospatialdata
Digital
tracedata
Administrativedata
?Phone
?Face-to-Face
?Onlineand
messaging-based
?Satelliteimagery
?Nighttimelights
?Vegetationindices
?Calldetailrecords
?Socialmediadata
?Taxdata
?Barcodescannerdata
?Socialregistries
Thesemorefrontiertypesofdatasourcescanbeleveragedinseveralwaysforreal-timemonitoring.First,theycancomplementexistingbaselinesurveydataasaninputtoimprovethenowcastingmethodsdiscussedabove.Thiscanbepar-ticularlyusefulwhenexistingsurveydataisnotrecent,doesnotcoverthewholepopulation,orlacksspecificdimensionsthatarerelevantforwelfareestimation.Second,theycanofferabroaderpictureonwelfarewhendataconstraintslimitthefeasibilityofestimatingmonetarywelfare.Inmanycases,other(non-mon-etary)measuresareveryinformativeindepictingwelfaretrendsordifferencesbetweenpopulations.Variablessuchasemployment,foodsecurity,orsubjectivewell-beingmaybeavailablefromothersourcesorcanbecollectedmoreeasilythanfullinformationonincomeorconsumption.Third,leadingindicators,suchaspredictionsofdroughtsorfloodsorinflationdata,canprovideimportantsig-nalsofchangesinwelfare,beforetheseareobservableinsurveydata.TheselasttwousecasesaresummarizedbythelastrowofFigure3.
Selectingthebest-fitapproach
Thistypologyisnotmeanttobeprescriptivenordoesitrankapproaches.Rather,itseekstoprovideamorestructuredwaytohelpusersidentifyacoresetofavailableoptionsandsystematicallythinkthroughthetrade-offs
14MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
betweenthem.Eachapproachcoveredinthetypologyincludesadiscussiononthemaincharacteristics,caveats,andlessonslearned—alongsideacollectionofresources.Thebest-fitapproachinonecontextmaynotalwaystranslatesuccess-fullyinanother.Inallcases,itwillbecriticaltokeepinmindthecorepolicyques-tiondrivingtheanalysisaswellasthebroadrangeofdataecosystemsinwhichuserswillbeseekingtoapplythesemethods,rangingfromstablesettingsrichinfrequentbaselineandauxiliarydatatofragileandconflict-affectedsettingswithverylimiteddatainputsandhighimplementationconstraints.
15|IntroductIon
1.
MethodsforNowcastingWelfare—WithaFocus
onMonetaryPoverty
Nowcastingandimputationmethodsleveragebaselinedatathatcontainsadirectmeasureofwelfareandmorerecentauxiliarydatasourceswithwhichwelfareisimputed.Thebaselinedataprovidesthefoundationoftheanalysis,con-tainingvariableswithwhichwelfarecanbeestimated(forexample,fromahouse-holdsurvey).Auxiliarydatasourcesvary;somemodelsmakeuseofhouseholdmicrodatasuchaslaborforce,census,demographicandhealth,orspeciallycol-lectedhouseholdsurveys;othersrelyonmoreeconomy-widedatasuchascurrentGDPorFinalConsumptionExpenditurenumbers.Somemethodsalsousebigdatasourcessuchasgeospatialorcalldetailrecorddata.Still,almostallthesemethodsneedthebaselineinformationtounderstandhowtheseauxiliaryvariablesrelatetowelfareorrequirebaselineincomedistributionstomakeinferencesaboutchangesinwelfare.
Inthefollowing,severaldifferentmethodsofestimatingwelfareandpovertyaredescribedinmoredetail,withspecificguidanceonadvantagesanddisad-vantages,andexampleusecasesandlinkstofurtherresourcesareprovided.
Annex1providesasummaryofthedifferentmethods,whicharediscussedinthistypology,includingrequirementsforthemethodtoaccuratelyestimatewelfareindicatorsandwhatlimitationsthemethodhas.
Beforewemoveon,itisimportanttonotethatallmodelsdescribednextrelyonimportantassumptionsthatneedtobeassessedandpossiblyvalidatedineachcontext.Whenfeasible,itisrecommendedtorundifferentoptionstocom-pareresults.Triangulationoffindingswithotherexternalsourcesofinformationisalsoadvisable.Finally,allmethodshaveerrors,andwhereverpossible,confi-denceintervalsshouldbereportedwiththeresults.
17
1.1NowcastingWelfareUsingSurveyandOtherNon-surveyCovariates
Surveyandnon-survey-basedimputationmethods(covariate-basednowcasting)modeltherelationshipbetweenconsumptionorincomeandothercovariatestonowcastpoverty.Survey-to-surveyimputationmethodsdrawupondistributionsofconsumption(orincome)variablesandothercovari-atesfromabaselinesurveytonowcastconsumption(orincome)levelsusingarecentauxiliarysurvey,whichitselfdoesnotholdconsumptionvariables.Non-survey-basedimputationdrawsuponinformationfromnon-surveyauxil-iarydata,suchasremotely-sensedgeospatialdata.Thesevariablescaneitherbeusedtoimprovesurvey-basedmodelsortoindependentlyformimputationmodels.
Whileimputationacrossspacehasreceivedconsiderableattention,advance-mentsinsurvey-basedimputationofwelfareovertimearestillrecent.Hentscheletal.(1998)andElbers,Lanjouw,andLanjouw(2003)initiatedawaveofresearchwithinandoutsideoftheWorldBanktoadaptimputationmethodstoestimatemonetarypovertyforpovertymapping.Theseimputationmodelshavebeenwidelyusedtogeneratespatiallydisaggregatedwelfareinformation.23Morerecentworkisexploringwaystoadaptthesemodelstoupdatewelfareacrosstime.
Mostcommonly,linearregressionmodelsareusedtoimputeconsumptionandexpenditurevariables.Surveyandnon-survey-basedimputationmodelsalsoinvolvestatisticalapproacheslikehot-deckimputationandmultipleimpu-tation(MI),whichaimtoreducenonresponsebiasandimprovetheoverallrep-resentativenessandqualityofsurveydata.4Somestudiesestimateapooror
2Formoreinformationaboutimputationmethodsacrossspace,seeforinstance
Corraletal.(2022)
,StifelandChristiaensen(2007),Tarozzi(2007),Christiaensen(2012),Mathiassen(2013),orthereport“
MoreThanaPrettyPicture:UsingPovertyMapstoDesignBetterPoliciesandInterventions
.”
3Survey-to-surveyimputationcanalsobeusefulforotherapplicationsbeyondupdatingormappingmonetarypoverty,suchasensuringcomparabilityofconsumptionovertimeorimputingnon-mone-tarywelfaremetrics.Evenwhensurveysareavailable,changesinpovertylinesorconsumptionmod-ulescanhindercomparisonsofpovertyovertime.Survey-to-surveyimputationhasalsobeenusedtorestorecomparabilityin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣告創(chuàng)意設(shè)計(jì)委托合同
- 房屋貸款保險(xiǎn)合同模板
- 2024版農(nóng)村建房材料供應(yīng)協(xié)議
- 2024年個(gè)人租房合同范本
- 代理招商合同參考
- 兩家企業(yè)合作協(xié)議書格式
- 凈身出戶的離婚協(xié)議書應(yīng)注意啥
- 家庭住宅裝潢監(jiān)理合同范例
- 房屋買賣居間合同書標(biāo)準(zhǔn)格式
- 子女撫養(yǎng)權(quán)協(xié)議書中的主要內(nèi)容與要求
- 河北學(xué)考美術(shù)復(fù)習(xí)題
- 交談溝通禮儀課件
- 小學(xué)口語交際教學(xué)實(shí)驗(yàn)研究方案
- 精神病學(xué)簡答題
- 火災(zāi)后建筑結(jié)構(gòu)鑒定標(biāo)準(zhǔn)cecs 252
- 班風(fēng)學(xué)風(fēng)主題班會(huì)課件
- 插花藝術(shù)基本知識(shí)
- 低等級(jí)農(nóng)村公路技術(shù)狀況評(píng)定指南
- 公務(wù)員考試行測(cè)答題卡
- 為未成年人利益保證書(抵押未成年人不動(dòng)產(chǎn))
- 肺心病(課)課件
評(píng)論
0/150
提交評(píng)論