版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省揚州市翠崗中學2024屆中考數(shù)學最后沖刺模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn),使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°2.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°3.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學記數(shù)法表示這個數(shù)是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1064.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.2 B.2 C.4 D.35.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.6.“保護水資源,節(jié)約用水”應成為每個公民的自覺行為.下表是某個小區(qū)隨機抽查到的10戶家庭的月用水情況,則下列關于這10戶家庭的月用水量說法錯誤的是()月用水量(噸)4569戶數(shù)(戶)3421A.中位數(shù)是5噸 B.眾數(shù)是5噸 C.極差是3噸 D.平均數(shù)是5.3噸7.下列幾何體中三視圖完全相同的是()A. B. C. D.8.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.9.如圖,這是一個幾何體的三視圖,根據(jù)圖中所示數(shù)據(jù)計算這個幾何體的側(cè)面積為()A.9π B.10π C.11π D.12π10.如圖,在中,.點是的中點,連結,過點作,分別交于點,與過點且垂直于的直線相交于點,連結.給出以下四個結論:①;②點是的中點;③;④,其中正確的個數(shù)是()A.4 B.3 C.2 D.1二、填空題(共7小題,每小題3分,滿分21分)11.在一次射擊比賽中,某運動員前7次射擊共中62環(huán),如果他要打破89環(huán)(10次射擊)的記錄,那么第8次射擊他至少要打出_____環(huán)的成績.12.如圖,直線y=x+2與反比例函數(shù)y=的圖象在第一象限交于點P.若OP=,則k的值為________.13.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.14.2011年,我國汽車銷量超過了18500000輛,這個數(shù)據(jù)用科學記數(shù)法表示為▲輛.15.如圖,在⊙O中,點B為半徑OA上一點,且OA=13,AB=1,若CD是一條過點B的動弦,則弦CD的最小值為_____.16.如圖,△ABC的面積為6,平行于BC的兩條直線分別交AB,AC于點D,E,F(xiàn),G.若AD=DF=FB,則四邊形DFGE的面積為_____.17.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點,則下列結論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設AB=a,MN=b,則≥1﹣1.三、解答題(共7小題,滿分69分)18.(10分)矩形AOBC中,OB=4,OA=1.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標系.F是BC邊上一個動點(不與B,C重合),過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E。當點F運動到邊BC的中點時,求點E的坐標;連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數(shù)的解析式.19.(5分)如圖所示,直線y=﹣2x+b與反比例函數(shù)y=交于點A、B,與x軸交于點C.(1)若A(﹣3,m)、B(1,n).直接寫出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直線AB的解析式.20.(8分)甲乙兩件服裝的進價共500元,商場決定將甲服裝按30%的利潤定價,乙服裝按20%的利潤定價,實際出售時,兩件服裝均按9折出售,商場賣出這兩件服裝共獲利67元.求甲乙兩件服裝的進價各是多少元;由于乙服裝暢銷,制衣廠經(jīng)過兩次上調(diào)價格后,使乙服裝每件的進價達到242元,求每件乙服裝進價的平均增長率;若每件乙服裝進價按平均增長率再次上調(diào),商場仍按9折出售,定價至少為多少元時,乙服裝才可獲得利潤(定價取整數(shù)).21.(10分)為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制出如下的統(tǒng)計圖①和圖②,請跟進相關信息,解答下列問題:(1)本次抽測的男生人數(shù)為,圖①中m的值為;(2)求本次抽測的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)若規(guī)定引體向上5次以上(含5次)為體能達標,根據(jù)樣本數(shù)據(jù),估計該校350名九年級男生中有多少人體能達標.22.(10分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.求m的值和反比例函數(shù)的表達式;直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?23.(12分)“知識改變命運,科技繁榮祖國”.在舉辦一屆全市科技運動會上.下圖為某校2017年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:(1)該校參加航模比賽的總?cè)藬?shù)是人,空模所在扇形的圓心角的度數(shù)是;(2)并把條形統(tǒng)計圖補充完整;(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎.今年全市中小學參加航模比賽人數(shù)共有2500人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?24.(14分)先化簡,再求值:,其中x為方程的根.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關鍵.2、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.3、C【解析】解:,故選C.4、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點睛】本題考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識,準確添加輔助線,掌握折疊前后圖形的對應關系是解題的關鍵.5、B【解析】
根據(jù)網(wǎng)格的特點求出三角形的三邊,再根據(jù)相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關鍵是熟知相似三角形的判定定理.6、C【解析】
根據(jù)中位數(shù)、眾數(shù)、極差和平均數(shù)的概念,對選項一一分析,即可選擇正確答案.【詳解】解:A、中位數(shù)=(5+5)÷2=5(噸),正確,故選項錯誤;B、數(shù)據(jù)5噸出現(xiàn)4次,次數(shù)最多,所以5噸是眾數(shù),正確,故選項錯誤;C、極差為9﹣4=5(噸),錯誤,故選項正確;D、平均數(shù)=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項錯誤.故選:C.【點睛】此題主要考查了平均數(shù)、中位數(shù)、眾數(shù)和極差的概念.要掌握這些基本概念才能熟練解題.7、A【解析】
找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.8、B【解析】
設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.9、B【解析】【分析】由三視圖可判斷出幾何體的形狀,進而利用圓錐的側(cè)面積公式求出答案.【詳解】由題意可得此幾何體是圓錐,底面圓的半徑為:2,母線長為:5,故這個幾何體的側(cè)面積為:π×2×5=10π,故選B.【點睛】本題考查了由三視圖判斷幾何體的形狀以及圓錐側(cè)面積求法,正確得出幾何體的形狀是解題關鍵.10、C【解析】
用特殊值法,設出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關線段的長;易證△GAB≌△DBC,求出相關線段的長;再證AG∥BC,求出相關線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,F(xiàn)E=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及等腰直角三角形的相關性質(zhì),中等難度,注意合理的運用特殊值法是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、8【解析】為了使第8次的環(huán)數(shù)最少,可使后面的2次射擊都達到最高環(huán)數(shù),即10環(huán).設第8次射擊環(huán)數(shù)為x環(huán),根據(jù)題意列出一元一次不等式62+x+2×10>89解之,得x>7x表示環(huán)數(shù),故x為正整數(shù)且x>7,則x的最小值為8即第8次至少應打8環(huán).點睛:本題考查的是一元一次不等式的應用.解決此類問題的關鍵是在理解題意的基礎上,建立與之相應的解決問題的“數(shù)學模型”——不等式,再由不等式的相關知識確定問題的答案.12、1【解析】設點P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣1(不合題意舍去),∴點P(1,1),∴1=,解得k=1.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點坐標,仔細審題,能夠求得點P的坐標是解題的關鍵.13、1.【解析】
根據(jù)(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【詳解】∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.【點睛】考查了平方差,關鍵是掌握(a+b)(a-b)=a1-b1.14、2.85×2.【解析】
根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×20n,其中2≤|a|<20,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于2還是小于2.當該數(shù)大于或等于2時,n為它的整數(shù)位數(shù)減2;當該數(shù)小于2時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的2個0).【詳解】解:28500000一共8位,從而28500000=2.85×2.15、10【解析】
連接OC,當CD⊥OA時CD的值最小,然后根據(jù)垂徑定理和勾股定理求解即可.【詳解】連接OC,當CD⊥OA時CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=,∴CD=5×2=10.故答案為10.【點睛】本題考查了垂徑定理及勾股定理,垂徑定理是:垂直與弦的直徑平分這條弦,并且平分這條弦所對的兩段弧
.16、1.【解析】
先根據(jù)題意可證得△ABC∽△ADE,△ABC∽△AFG,再根據(jù)△ABC的面積為6分別求出△ADE與△AFG的面積,則四邊形DFGE的面積=S△AFG-S△ADE.【詳解】解:∵DE∥BC,,
∴△ADE∽△ABC,∵AD=DF=FB,
∴=()1,即=()1,∴S△ADE=;∵FG∥BC,∴△AFG∽△ABC,
=()1,即=()1,∴S△AFG=;∴S四邊形DFGE=S△AFG-S△ADE=-=1.故答案為:1.【點睛】本題考查了相似三角形的性質(zhì)與應用,解題的關鍵是熟練的掌握相似三角形的性質(zhì)與應用.17、①②③④⑤⑥⑦.【解析】
將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計算,判斷⑥,根據(jù)點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當且僅當BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結論正確;如圖1,將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關鍵是構造全等三角形.三、解答題(共7小題,滿分69分)18、(1)E(2,1);(2);(1).【解析】
(1)先確定出點C坐標,進而得出點F坐標,即可得出結論;(2)先確定出點F的橫坐標,進而表示出點F的坐標,得出CF,同理表示出CE,即可得出結論;(1)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結論.【詳解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中點,∴F(4,),∵F在反比例y=函數(shù)圖象上,∴k=4×=6,∴反比例函數(shù)的解析式為y=,∵E點的坐標為1,∴E(2,1);(2)∵F點的橫坐標為4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的縱坐標為1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如圖,由(2)知,CF=,CE=,,過點E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折疊知,EG=CE,F(xiàn)G=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,F(xiàn)G2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函數(shù)解析式為y=.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,中點坐標公式,相似三角形的判定和性質(zhì),銳角三角函數(shù),求出CE:CF是解本題的關鍵.19、(1)x<﹣3或0<x<1;(2);(3)y=﹣2x﹣2.【解析】
(1)不等式的解即為函數(shù)y=﹣2x+b的圖象在函數(shù)y=上方的x的取值范圍.可由圖象直接得到.(2)用b表示出OC和OF的長度,求出CF的長,進而求出sin∠OCB.(3)求直線AB的解析式關鍵是求出b的值.【詳解】解:(1)如圖:由圖象得:不等式﹣2x+b>的解是x<﹣3或0<x<1;(2)設直線AB和y軸的交點為F.當y=0時,x=,即OC=﹣;當x=0時,y=b,即OF=﹣b,∴CF==,∴sin∠OCB=sin∠OCF===.(3)過A作AD⊥x軸,過B作BE⊥x軸,則AC=AD=,BC=,∴AC﹣BC=(yA+yB)=(xA+xB)=﹣5,又﹣2x+b=,所以﹣2x2+bx﹣k=0,∴,∴×b=﹣5,∴b=,∴y=﹣2x﹣2.【點睛】這道題主要考查反比例函數(shù)的圖象與一次函數(shù)的交點問題,借助圖象分析之間的關系,體現(xiàn)數(shù)形結合思想的重要性.20、(1)甲服裝的進價為300元、乙服裝的進價為1元.(2)每件乙服裝進價的平均增長率為10%;(3)乙服裝的定價至少為296元.【解析】
(1)若設甲服裝的成本為x元,則乙服裝的成本為(500-x)元.根據(jù)公式:總利潤=總售價-總進價,即可列出方程.(2)利用乙服裝的成本為1元,經(jīng)過兩次上調(diào)價格后,使乙服裝每件的進價達到242元,利用增長率公式求出即可;(3)利用每件乙服裝進價按平均增長率再次上調(diào),再次上調(diào)價格為:242×(1+10%)=266.2(元),進而利用不等式求出即可.【詳解】(1)設甲服裝的成本為x元,則乙服裝的成本為(500-x)元,根據(jù)題意得:90%?(1+30%)x+90%?(1+20%)(500-x)-500=67,解得:x=300,500-x=1.答:甲服裝的成本為300元、乙服裝的成本為1元.(2)∵乙服裝的成本為1元,經(jīng)過兩次上調(diào)價格后,使乙服裝每件的進價達到242元,∴設每件乙服裝進價的平均增長率為y,則,解得:=0.1=10%,=-2.1(不合題意,舍去).答:每件乙服裝進價的平均增長率為10%;(3)∵每件乙服裝進價按平均增長率再次上調(diào)∴再次上調(diào)價格為:242×(1+10%)=266.2(元)∵商場仍按9折出售,設定價為a元時0.9a-266.2>0解得:a>故定價至少為296元時,乙服裝才可獲得利潤.考點:一元二次方程的應用,不等式的應用,打折銷售問題21、(1)50、1;(2)平均數(shù)為5.16次,眾數(shù)為5次,中位數(shù)為5次;(3)估計該校350名九年級男生中有2人體能達標.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東理工學院《博弈論基礎》2023-2024學年第一學期期末試卷
- 廣東科技學院《建筑工程識圖與構造》2023-2024學年第一學期期末試卷
- 廣東江門幼兒師范高等專科學?!禤rote軟件技術》2023-2024學年第一學期期末試卷
- 廣東機電職業(yè)技術學院《工程流體力學》2023-2024學年第一學期期末試卷
- 廣東行政職業(yè)學院《擒拿防衛(wèi)術》2023-2024學年第一學期期末試卷
- 廣東工業(yè)大學《美術技法(一)》2023-2024學年第一學期期末試卷
- 廣東財經(jīng)大學《醫(yī)藥人力資源管理》2023-2024學年第一學期期末試卷
- 交通安全課件
- 《疾病預防與控制》課件
- 廣東財經(jīng)大學《工程地震與結構抗震》2023-2024學年第一學期期末試卷
- 2018年海南公務員考試申論真題
- GB/T 28799.2-2020冷熱水用耐熱聚乙烯(PE-RT)管道系統(tǒng)第2部分:管材
- 《毛澤東思想概論》題庫
- 勞務派遣人員考核方案
- 意志力講解學習課件
- 生產(chǎn)作業(yè)員質(zhì)量意識培訓課件
- 固定資產(chǎn)報廢管理辦法
- 《路由與交換》課程標準
- 工程開工令模板
- 福建省漳州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細及行政區(qū)劃代碼
- 員工投訴表格樣板
評論
0/150
提交評論