版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ValueofDemand
Flexibilityinthe
EuropeanPower
Sector
FinalReport
03-10-2023
Keyfindings
?ThisreportexploresdifferentscenariosfortheEuropeanpoweranddistrictheatingsystemeachrepresentingvaryingdegreesofdemand
flexibility.ThescenarioscomplywiththeEU'sobjectiveofbecomingclimateneutralby2050.
?Whenwecomparethe"Reference"scenario,whichassumesfrozenpolicywithregardstoflexibilityandminimaladvancementindemandresponse
(DR)technologies,withthe"Flex"scenario,whereregulatorychanges,technologicaladvancements,andheightenedconsumerawarenessenable
demandresponse,weobservethefollowingadvantages:
—Asocio-economicbenefitof€15.5billionannuallybytheyear2050.
—Asubstantialreductioninconsumercosts,amountingtoapproximately€26billionannuallyby2050.
—Adecreaseinaverageconsumerpowerprices(wholesale)from€61/MWhto€55/MWh.
—Theabatementof40milliontonsofCO2in2030.
—Areducedneedforapproximately300GWofbatterycapacityand90GWlessgaspeakcapacity.Additionally,anintegrationof100GWmoresolarcapacityintotheenergymix.
—Investmentsininterconnectorsbetweenbiddingzonesdecreasedby21%(61GW)
?Themodellingconsidersonlybenefitsofdemandresponseinwhole-saleelectricitymarketsincludingtheneedforinvestmentsininterconnectors
betweenbiddingzones.Anypositive(ornegative)effectsofdemandresponseondistributiongridcostandinternaltransmissiongridcostarenot
consideredinthemodelling.Possiblerevenuesfromsellingancillaryservicesarenotconsideredeither.
?Thesefindingsunderscorethepotentialbenefitsassociatedwithembracingdemandresponseandfosteringaflexibleenergylandscape.
?Pleasenotethatthecostsrelatedtorealizingthepotentialforload-shiftamongcertainconsumers,includinghouseholds,services,industries,and
electricvehicle(EV)owners,havenotbeenfactoredintotheanalysis.
Introduction
4
Projectcontext
Danfossisactivelyengagedinassessingtheroleofdemand-sideflexibilitywithintheforthcoming
Europeanpowersystemlandscape.Againstthisbackdrop,wehavepreparedalong-termanalysis
spanningthemilestoneyearsof2025,2030,and2050.Theprimaryobjectiveofthisanalysisisto
quantifytheholisticvaluethatvariousformsofdemandflexibilitycancontribute.
Ourevaluationhingesonasetofkeymetricsthatencompasssocioeconomicimpact,monetary
advantagesforconsumers,reductionsinCO2emissionsandfuelconsumption,andpowerprices.To
gainathoroughunderstanding,thesecriticalaspectswillbeinvestigatedthroughthelensofthree
distinctscenarios,eachrepresentingvaryingdegreesofdemandflexibility.
TheanalysiswillbeconductedbyutilizingtheBalmorelpowersystemmodeltoexamineEuropeanday-
aheadmarkets.Thisapproachwillfocusonoptimizingtheintricateinterplaybetweensupplyand
demanddynamics,withtheprimaryaimofminimizingcostsfortheoverallsystemsolution.
Note,thatthemodellingconsidersonlybenefitsofdemandresponseinwhole-saleelectricitymarkets
includingtheneedforinvestmentsininterconnectorsbetweenbiddingzones.Anypositive(or
negative)effectsofdemandresponseondistributiongridcostandinternaltransmissiongridcostare
notconsideredinthemodelling.Possiblerevenuesfromsellingancillaryservicesarenotconsidered
either.
5
Balmorelisafundamentalpartial-equilibriummodelofthepoweranddistrictheatingsystem.The
modelfindsleast-costsolutionsbasedonassumptionssuchasthedevelopmentoffuelprices,
demanddevelopment,technologycostsandcharacteristics,renewableresourcesandother
Balmorelenergysystemmodelling
tool
essentialparameters.
Themodeliscapableofsimultaneousinvestmentanddispatchoptimisation,showingoptimal
solutionsforpowergenerationandinterconnectorcapacity,dispatch,transmissionflowand
electricityprices.Pricesaregeneratedfromsystemmarginalcosts,emulatingoptimalcompetitive
Modeldevelopedto
supporttechnicaland
policyanalysesofpower
systems.
biddingandclearingofthemarket.
Optimizationofeconomicaldispatchand
capacityexpansion
solutionfortherepresentedenergy
system.
Characteristics:open-
source,customizable,
scalable,transparent
Model
dimensions
Mainevaluationmeasures
?Powerpricesandmarket
values
?Generation&capacity
balances
?CO2andpollutant
emissions
?Socio-economicsystem
costs
Temporalscope
?Selectedoptimizationyears
?Timeaggregatedinvestment
optimization
?Hourlydispatchoptimization
Geographicalscope
?Nordics(biddingzones)
?Germany(4regions)
?Baltics
?CentralEurope,UKandItaly
?Iberianpeninsula
Note:
OvalshapesintheNorthandBalticseasrepresentexisting&future
offshorewindlocationsinanaggregatedmatter.
Illustratedlinesrepresenttheoptionsoftransmissioncapacities.
Nomenclature
AcronymTermAcronymTerm
CAPEXCapitalcostsInd.HIndividualHeating
CHPCombinedHeatandPowerLDCLoadDurationCurve
DHDistrictHeatingOPEXOperationexpenditures
DSRDemandSideResponsePDCPriceDurationCurve
EUEuropeanUnionPtXPowertoX
EVsElectricVehiclesPVPhotovoltaics
FLHFullLoadHoursTYNDPTenYearDevelopmentPlant
H2HydrogenV2GVehicletoGrid
HSDCHyperScaleDataCentersVRESVariableRenewableEnergy
Sources
8
2
PowerSystemExpectations
ElectricitydemandinEurope
Theenvisionedelectrificationofheating,industryand
TotalElectricityDemand
transportsectorsisexpectedtoincreaseelectricity
7.000
twofoldtowards2030.
6.000
Thefollowingsourcesareusedfordemandprojections:
5.000
?REPowerEUforhydrogenproductiontargets
towards2030.
4.000
—REPowerEUhasbeendevelopedinthewakeofRussia’sinvasionof
Ukraineandassumes10mill.tondomestichydrogenproduction
(330TWh)intheEUalreadyby2030.
3.000
2.000
—TheEUCommissionMIX-scenariohavebeenusedforthelong-
termhydrogendemand.
1.000
?TYNDP’sGlobalAmbitionscenarioforthe
developmentoftotaldemandforclassicdemand,
electricvehiclesandindividualheating.
0
202520302050
Electricityconsumption:ClassicdemandElectricitytodistrictheating
Electricityconsumption-HSDCsElectricitytoindividualheating
ElectricitytoindustrialelectrificationElectricityconsumption:ElectricVehicles
?Electricityusefordistrictheatingissubjecttomodel
optimisation.
ElectricitytoP2X
10
Demandbucketsinthemodel
DemandDescriptionAssociatedcostofflexibilitybucket
ClassicClassicelectricitydemandmainlyforhouseholds,theindustryandservicesector.Nodirectcosts.Themodelincludesaninertiawhichensuresthatdemand
Containsdemandtypesnotexplicitlycoveredundertheothercategories.flexibilityisonlyactivatedwhenthereisapricedifferenceof15€/MWh.EU2021mix(approx.):
?43%industry?28%service
?26%households
?3%agriculture
Electric
vehicles
Demandincludesallelectricityforroadtransport.Initialprofileisbasedon
chargingpatternsmatchingtransportdemand(Estimatedforindividualcountries
basedonempiricaldatafromNorway)
Nodirectcosts.Themodelincludesaninertiawhichensuresthatdemand
flexibilityisonlyactivatedwhenthereisapricedifferenceof15€/MWh.
V2Gactivitiesfacetheoccurringmarketcosts(marketclearingspotprices),
essentiallyobtainingrevenuesfrompowerarbitrage.Nodirectcosts.Themodel
Individual
heating
Includeselectricityconsumptionforspaceheatinginbuildings.Thedemandis
suppliedbyheatpumpsandelectricboilers.
includesaninertiawhichensuresthatdemandflexibilityisonlyactivatedwhen
thereisapricedifferenceofabout55€/MWh
Nodirectcosts.Themodelincludesaninertiawhichensuresthatdemand
flexibilityisonlyactivatedwhenthereisapricedifferenceof10€/MWh.
DistrictHeatdemandfordistrictheatingisincluded.HeatpumpsandelectricboilersareInvestmentandoperationalcostforadditionalelectricboilersorheatpump
heating
amongtheoptionstosupplythedistrictheatingdemand.Otheroptionsarefuel-
baseddistrictheatinggenerationfromheatonlyboilersorCHP.
Dependingonthescenariothemodelmayinvestinsteeltanksandpitstorages
capacity.Usingalternativeoptionsforheatgenerationyieldsadditionalcost.
Investmentcostandoperationalcostsofsteeltanksandpitstorages.
Power-to-XDemandforproductionofe-gasses,e-liquidsandhydrogenbasedonEU
commissionscenarios.Modelledaselectricityconsuminggenerationfacilities
(electrolysers).
Investmentandoperationalcostforelectrolysersandcavernstoragesincluded.
Dependingonscenariomodeloptimisedhydrogenstoragescanbeinstalledto
enableflexibleuseofelectrolysers,whiledemandismodelledconstant.
GenerationcapacityinEurope
?Thedevelopmentinnewcapacityisdrivenbydemanddevelopment,technologycosts
andresourceassumptions.Moreover,importantpoliticaltargetsaretakenintoaccount,
includingminimumbuildoutforrenewableenergy,coalphaseoutplansandnuclear
plans.
Buildoutrequirementsandlevelsinthemodelarea
2.500
?Windandsolar:Asaminimumlevelforrenewableenergy,countriesareexpectedtofulfil
thelevelsofwindandsolarpowersetoutinENTSO-ETYNDP-scenarioNationaltrends
towards2030.Keynationalareincludedaswell,Germanyforexample,isexpectedto
pursuehighertargetsforwindandsolarpowerassetoutintheGovernment’sEaster
PackagefromApril2022,aimingfor215GWsolarpowerandaround120GWofonshore
windin2030.Additionally,80%oftheambitious30GWoffshorewindtargetby2030is
assumedrealised.Beyond2030,investmentsarebasedonmodeloptimisation.For
onshorewindandsolarPV,countryspecificcapsareemployedtoreflectarealistic
deploymentthatconsidersplanningandgridconstraintsatthelocallevel.These
constraintsaregraduallyrelaxedovertime.
2.000
1.500
1.000
500
?Nuclearcapacityisdeterminedexogenously.ThecapacitybasedonplansfromWorld
NuclearAssociationfordecommissioningbutwithnewplantsbeingbuiltintheUK,
FinlandandPoland.Thetotalcapacitydeclinesfromaround100GWin2021to~90GWin
2050.
0
20252030203520402050
MinonshoreOnshorecapMaxonshore
?Thermalcapacity:Currentplansfordecommissioningofcoal-firedcapacityare
considered.Otherthanthat,decommissioningofandinvestmentsinthermalpower
capacityisdeterminedbythemodel.Investmentinbiomasscapacity(woodchips,wood
pellets,straw)isconstrainedat30GWby2030(correspondingtoafuelinputofapprox.
1.900PJ)toreflectthatthecurrentpipelineofnewbiomasscapacityislimited.Towards
2050,thebiomassconstraintisliftedto40GW.
12
MinoffshoreOffshorecapMaxoffshore
MinsolarSolarcapMaxsolar
Note:
oMinandmaxshowassumptionsonminimumandmaximumpossible
buildoutpathways.
oNodifferencebetweenthetwomeans,meansthataexactcapacityis
installed.
o“Cap”showscapacityasaresultofmodeloptimisation.
oSpainandPortugalarenotincludedinthepresentgraph.
FuelandCO2prices
Fuelprices
60
50
40
Fuelprices
30
?Futures(April2023).Untilandincluding2026
?Longterm.Pricesexpectedtoconvergetolongtermequilibrium
pricesin2030
20
10
?IEAWorldEnergyOutlook2022
?AnnouncedPledgesscenario
0
?Naturalgas:LNGimportprice(Japan).
?Currenthighgaspricesexpectedtonormaliseovertime,but
outlooksaredifficultincurrentsituation.Towards2030,reduced
dependenceonnaturalgasandhighglobalbuildoutof
renewableslowersdemandforfossilfuelsandthusprices
CoalLightoilNaturalgasWoodchipsWoodpellets
ETSprice
250
CO2-prices
200
?Forwardprices(April2023).Untilandincluding2026
150
?Longterm.PricesexpectedtoconvergetoAnnouncedPledges
scenariofromWEO2022in2030andonwards.
100
?HighCO2-prices–alsogoingforwardto2030.However,current
pricesarealsotosomeextentaffectedbyhighgasprices.
50
0
13
Studystructure
14
Analysedscenarios
EaEnergyAnalyses’referenceprojectiontowards2050willbeutilisedasabasisforthepresentstudy,withkeyflexibilityaspectsvaryingacrossthreescenarios.
I.A“Reference”scenarioreflectingfrozenpolicyandlimiteddevelopmentofDRtechnologies.
Thereferencedisplaysrelativelylowlevelsofflexibility,includinginflexibleelectricity
consumptionpatternsamongacertainportionofthePtXcapacity.
II.ThePtXsectorisexpectedtoprovidethehighestlevelofflexibilityinthesystemin
upcomingyears,duetoitsdemandmagnitudebutalsocharacteristics.Therefore,an
intermediatescenario(“PtXFlex”)willbeanalysedtoshedlightonthevaluethatPtXrelated
flexibilitybringstothesystemontopofreferencecase.
III.Finally,themostflexiblescenario(“Flex”),willreflecttheadditionoffurtherdemand-side
flexibilityactionsineachdemandcategory,showcasingtheoverallemergedvaluefromthe
deploymentofdifferentflexibilitymeasures.
Anoverviewofthevaryingaspectsbetweenscenarioscanbeseeninthefollowingslide:
15
Definitionofscenarios
Demand
bucket
ReferenceReference+PtXflexibility(“PtXFlex”)Flexibilityscenario(“Flex”)
Classic2,5%fuel-shift(permanentreduction
indemand)
5%load-shift(upto2hours).
AsReference10%fuel-shift(permanentreductionindemand)
20%load-shift(upto2hours).
25%realisedin2025,50%in2030,100%by2050.
25%realisedin2025,50%in2030,
100%by2050.
Electric
vehicles
20%oftotalloadforelectricroad
transportwillparticipateinflexible
chargingandbeabletomoveplanned
chargingbyupto4hours.
15%oftotalloadV2G“fit”.
AsReference65%oftotalloadforelectricroadtransportwillparticipateinflexible
chargingandbeabletomoveplannedchargingbyupto4hours.
50%oftotalloadV2G“fit”.
25%realisedin2025,50%in2030,100%by2050.
25%realisedin2025,50%in2030,100%by2050.
IndividualFixedconsumptionpattern.AsReferenceFlexibleheatgenerationbyadjustmentstoinitialdemandprofile.Average
heatingdemandcanbemoved3hours.
25%realisedin2025,50%in2030,100%by2050.
DistrictFlexibilityconsistsoftheoptionAsReferenceAsReferenceplus:heatingutilitiestofulfiltheheatdemand
byelectricityorotherheatThemodelmayinvestinsteeltanksandpitstorages.
generation,dependingonthe
powerprices.Load-shiftamongdistrictheatingconsumers:
2025:4hoursflex,25%realised
Themodelmayinvestinsteeltanks2030:5hoursflex,50%realised
only.2050:6hoursflex,75%realised
Power-to-X75%ofPtXdemandoperatesflexible100%flexiblePtXload.AsReference+PtXflexibility
25%ofPtXdemandfollowsafixedModeloptimisedhydrogenstoragescanbeinstalledtoenableflexible
loadcurve(flatthroughouttheyear).useofelectrolysers,whiledemandismodelledconstant.Costof
storagereflectsthoseoflarge-scalecaverns,assumingahydrogenbackboneinfrastructureisavailabletoconnecthydrogenproducersdirectlytoconsumersandcentrallylocalisedlargescalehydrogencaverns.
Factorsaffectingtherealisationofscenarios
?Severalfactorsaffecttheuptakeofdemandresponsetechnologiesincluding
1.RegulatoryEnvironment:Governmentpoliciesandregulationscangreatlyimpactdemandresponseadoption.Supportivepolicies,incentives,
andmandatescanencouragetheimplementationofdemandresponseprograms.
2.TechnologyAvailabilityandMaturity:Theavailabilityandmaturityofdemandresponsetechnologiesplayacrucialrole.Ifadvancedandcost-
effectivetechnologiesarereadilyaccessible,itbecomeseasierforconsumersandbusinessestoimplementdemandresponsestrategies.
3.ConsumerAwarenessandEducation:Lackofawarenessorunderstandingofdemandresponsecanbeabarrier.Effectiveeducationand
outreachprogramscanhelpconsumersandbusinessesmakeinformeddecisions.
4.ElectricitypricesandGridneeds:Theeconomicbenefitofbeingflexibledependsonthestateofthegridandthecompositionofpowersupply
etc.Strongerincentiveswillencouragemoredemandresponse.
?Thereferencescenarioisintendedtoreflectasituationwherefactors1-3donotimproveconsiderablycomparedto
today(factor4isconsideredwithinthemodelling*).
?Theflexibilityscenariosshowdevelopments,wheretheregulatoryenvironment,technologydevelopmentand
consumerawarenessfacilitatedemandresponse.
*Themodellingconsidersbenefitsofdemandresponseinwhole-saleelectricitymarketsincludingtheneedforinvestmentsininterconnectorsbetweenbidding
zones.Anypositive(ornegative)effectsofdemandresponseondistributiongridcostandinternaltransmissiongridcostarenotconsideredinthemodelling.Possible
revenuesfromsellingancillaryservicesarenotconsideredeither.
Demand-sideflexibilitymeasuresinEurope
oElectricvehiclesdemandincludesallelectricityforroad
transport.Thisdemandisflexible,andanincreasingsharecanbe
movedfor4hours.Thus,themodellingaccountsforsmart
charging.Vehicle-to-gridsolutionscanalsobeenabled.
TotalElectricityDemandProgression
3.000
oElectricityforindividualheatingincludeselectricityconsumption
forspaceheatinginbuildings,whichismodelledasheat
demand.Thedemandissuppliedbyheatpumps,directelectric
heatingandelectricboilers.Apartoftheindividualheatdemand
canbeconsideredflexible,withtheoptionofload-shiftingin
futurehours.
2.500
2.000
1.500
oElectricityfordistrictheatingisbasedonmodeloptimization.
1.000
Heatpumpsandelectricboilersareamongtheoptionstosupplythedistrictheatingdemand.Otheroptionsarefuel-based
500
districtheatinggenerationfromheatonlyboilersorCHP.
0
oElectricityforP2Xisincludedbasedontheconsumptionofe-
202520302050
gasses,e-liquidsandhydrogen.AP2Xefficiencyof70%isassumedforhydrogenand60%fore-gassesande-liquids.If
profitable,storagescanbeinstalledtomoveportionsofthe
demand,henceprovidingfurtherflexibilitytothesystem.Electricityconsumption:ClassicdemandElectricitytodistrictheating
Electricityconsumption-HSDCsElectricitytoindividualheating
oThelevelofflexibilityintheclassicdemandisrisingfrom2020
ElectricitytoindustrialelectrificationElectricityconsumption:ElectricVehicles
towards2050againsttheaveragehourlydemand.Thedemandcanbemovedfor2hoursbypayinganactivationprice.This
ElectricitytoP2X
demandincludesindustrythatalsohaveflexibilitytomove
productiontolowpricehours.Note:
oHSDCs:HyperScaleDataCenters
oClassicdemandreflectspowerusefor:Industry,Service,Households,
Agriculture.
oIllustratedannualdemandlevelsreflecttheanalysed“Flex”scenarioas18
describedinupcomingsections.
Reference
Flexibilityonclassicdemand:
LowVREweek(W48),2050
Assumptionsondemandresponseforclassicelectricitydemand
(households+industry)arebasedonanestimateoflong-term
flexibilityagainsttheaveragedemandin2050.
Demandresponseisimplementedasapotentialtoshiftofdemandin
timeforupto2hours.Forcomparison,ENTSO-Ereportedaverage
DSR(Demandsideresponse)ofroughly9%ofaveragedemandin
2040intheTYNDP2018GlobalClimateActionscenario.
50%offlexibilityisactivatedatacostof15€/MWh,whilethe
remaining50%offlexibilityisactivatedat30€/MWh,meaningthatthe
differencebetweenachievableelectricitypriceshastobeatleast15
€/MWh,beforeloadshiftingtakesplace.
Flex
Deploymentoflocallydistributedbatterysolutions(forexample
residentialbatteriesincombinationwithrooftopPV)arenot
consideredinthemodellingandcouldprovideaportionofthis
flexibilitypotential.
Utilityscalebatteriesarenotincludedintheestimateshereastheyare
subjecttoexplicitoptimisation.
19
Note:
oIllustrationsreflectdemandbehaviorinalowrenewableenergyweekwithhighelectricityprices.Chosenregion
reflectsMunichinGermany.Season“S”correspondtothereflectedweeknumber.
Flexibilityonelectricvehicles
Chargingpatterns
Illustrationofchargingpatternsandlimits(2030)
Chargingpatternsforelectricvehiclesareassumedtobeflexible
relativetoaninitialchargingprofile.Theinitialchargingprofileis
basedonestimatesofimmediatechargingprofilesaccordingto
drivingpatterns(Fullbluelineforweekdaysandfullgreylinefor
weekends).1ThesechargingprofileswouldensureEV’sarefully
chargedasfastaspossibleafterdriving.Thus,chargingprofile
followpeakcommutinghourswithalittletimelag.Charging
patternsarebasedonresearchonpersonalvehicles,butareused
heretorepresentallelectricityuseforroadtransport.
12%
10%
8%
6%
4%
Onlyashareofallvehiclesareassumedtobeflexible,whichleads
tocertainminimum(reddashedline)andmaximum(bluedashed
line)loadsforchargingelectricvehiclesatalltimes.Theresulting
potentialloadpatternsexcludeoptionforvehicle-to-grid
technologies,whichcouldsignificantlyincreaseflexibilityoptions,
albeitatahighercost,totakeintoaccounttechnologyneedsand
lifetimereductionsonbatteriesduetoadditionalcycling.
2%
0%
AllvehiclesMaximumallvehicles
Allvehicles(Weekend)Minimumallvehicles(Non-flexiblevehicles)
1Source:Liu,Z.,Nielsen,A.H.,&Wu,Q.(2016).OptimalOperationofEVsandHPsintheNordicPowerSystem.
TechnicalUniversityofDenmark,DepartmentofElectricalEngineering.
20
Limitsonflexibilityofelectricvehicles
Timeshifting
Flexibilityisimplementedasapotentialtoshifttheaveragecharging
load(oftheflexiblevehicles)ofupto4hoursintime.Energydemand
hastobeservedovera24hourperiod,andallenergydemandhasto
beservedby7aminthemorning,whereallEVsarechargedtothe
desiredlevel
Illustrationofchargingpatternsandlimits(2030)
12%
10%
Restrictiononflexibility
Flexibilityofchargingforelectricvehiclesissubjecttoanumberof
restrictions,whichdevelopovertime
8%
oOnlyafractionofvehiclesparticipateinflexiblecharging,meaning
theremainingvehiclewillfollowtheinitialchargingpatternatall
time.Themaximumchargingislimitedtoamultipleofthe
estimatedpeakdemandoftheinitialprofile
oMaximumchargingforflexiblevehiclescannotexceed125%ofthe
peakoftheirinitialchargingprofile.
oFlexibilityisactivatedatacostof15€/MWhindependentoftime
difference.Thismeans,thedifferencebetweenachievable
electricitypriceshastobeatleast15€/MWh,beforeloadshifting
takesplace.Foranaveragepersonalvehiclewithannualdriving
rangesof15.000–20.000kmandelectricitydemandofaround3
MWh/year,thiscorrespondsto45€/year.
6%
4%
2%
0%
AllvehiclesFlexiblevehiclesMaximumflexiblevehicles
21
Reference
Flexibilityonelectricvehicles
Theresultingmaximumcapacitytoincreasechargingorinterrupt
charging(providingupregulationtothesystem)isshownonthe
right.Theseflexibilitiesarewellbelowtechnicalaccumulated
batteryloadingandvolumeinthesystem,whichareupto18
timeshigher.
Flexibilityinchargingpatternsisusedindispatchoptimisationas
illustrated,showingamoveawayfrompeakloadininitial
chargingprofileattheexpenseofhigherpeaks.
Flex
22
Note:
oIllustrationsreflectdemandbehaviorinalowrenewableenergyweekwithhighelectricityprices.Chosenregion
reflectsMunichinGermany.Season“S”correspondtothereflectedweeknumber.
Reference
Limitsonflexibilityfrom
individualheating
Electricityusedforheatingcanbeflexiblebyexploitingheat
capacityinbuildingsandhotwatertanks.Theinitialdemand
profilefollowstheheatdemand,whichisdependentonhotwater
usageandoutsidetemperature.Anincreasingshareofbuildings
areparticipatinginprovidingflexibilitytothesystembyallowing
theaverageseasonaldemandtobeshiftedbyupto2hours.
Loadforbuildingsnotparticipatinginflexibleheatingwillhaveto
beservedatalltimes.Maximumloadforindividualheating
cannotexceedmaximumannualpeakdemand,whichiswell
belowthetotalcumulativeinstalledtechnicalcapacityofheat
pumps.
Heatdemandhastobesuppliedwithin24hoursandthuscannot
beshiftedacrossdays.
Flexibilityisactivatedatacostof10€/MWh,meaningthe
differencebetweenachievableelectricitypriceshastobeatleast
10€/MWh,beforeloadshiftingtakesplace.
Flex
23
Note:
oIllustrationsreflectdemandbehaviorinalowrenewableenergyweekwithhighelectricityprices.Chosenregion
reflectsMunichinGermany.Season“S”correspondtothereflectedweeknumber.
PtXflexibilityandVREcorrelations:Germany,Flex,2050
Thefollowingillustrationsprovideaweeklyoverviewofthepowersysteminaselectedcountry.Fromapowersystemperspective,highflexibilityisprovidedinthe
systemviabothPtXactivitiesandinterconnectors.IntermsofPtXactivities,thereisastrongcorrelationofhighVREgenerationandelectricityutilisationinthePtX
sector(PtXLoad).ThismeansthatPtXmostlyalleviatessystempressureratherthancontributingtoit.Foranoverviewofthesameweeksacrossthedifferent
scenariosrefertotheAppendix.
HighVREWeek(Week28)LowVREWeek(Week48)
ModelResults
25
PowerGenerationCapacities
PowergenerationcapacityOther
3.500
Batteries
3.000
Solar
Twomainpatternscanbeidentifiedbetweenthedeveloped
scenariosandthereferencecasewhenmovingto2050:
I.WhiletransitioningtoatotallyflexiblePtXoperation
behaviour(“PtXFlex”),batteryinvestments,whichaidthe
modeltoshiftpowerfromcheapertimeslicestomore
expensiveones,arereplacedbyhighersolarPVcapacities
andH2storages.Theadditionalflexibilityinthehydrogen
sectorhelpsaveinvestmentsinbatteriesinthepower
sector.UsingPVwithlowLCOE,hydrogenisstoredand
utilisedacrosstimesegments.
2.500
2.000
1.500
1.000
500
0
202520302050
Onshorewind
Offshorewind
Hydro
Pumpedhydro
Biogas
Biomass
Waste
Coal
Nuclear
II.Whenaddingfurtherdemandsideflexibilitymeasuresto
thesystem,similarpatternsasin“PtXFlex”areobserved,
approximatelyexaggeratedby50%,inparalleltoan
additionaldecreaseof93GWofgasand17GWofoffshore
windgenerators.Withtheopportunityofmoreflexible
demand,opportunitiesofreducingthecontributionofmore
expensivemarg
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年年七年級(jí)數(shù)學(xué)人教版下冊專題整合復(fù)習(xí)卷27.3 位似(1)(含答案)-
- 研發(fā)團(tuán)隊(duì)有效管理培訓(xùn)
- 幼兒音樂教育活動(dòng)的策劃計(jì)劃
- 壬二酸行業(yè)相關(guān)投資計(jì)劃提議
- 自然觀察小班孩子的環(huán)境教育計(jì)劃
- 會(huì)計(jì)、審計(jì)及稅務(wù)服務(wù)相關(guān)行業(yè)投資方案范本
- 制定企業(yè)社會(huì)責(zé)任與人事發(fā)展結(jié)合的計(jì)劃
- 班級(jí)成員角色的明確計(jì)劃
- 社區(qū)小型創(chuàng)業(yè)支持的工作方案計(jì)劃
- 教育管理制度培訓(xùn)
- 美團(tuán)合作協(xié)議書范本(2024版)
- 第21課《小圣施威降大圣》課件 2024-2025學(xué)年統(tǒng)編版語文七年級(jí)上冊
- AQ/T 2061-2018 金屬非金屬地下礦山防治水安全技術(shù)規(guī)范(正式版)
- 天津市部分區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末練習(xí)生物試題
- 小學(xué)三年級(jí)-安全知識(shí)考試試題-(附答案)-
- 醫(yī)院門診醫(yī)生績效考核標(biāo)準(zhǔn)及評(píng)分細(xì)則
- MOOC 體育保健學(xué)-江西財(cái)經(jīng)大學(xué) 中國大學(xué)慕課答案
- 廣東省深圳市羅湖區(qū)2022-2023學(xué)年二年級(jí)上學(xué)期數(shù)學(xué)期中復(fù)習(xí)試卷
- 康復(fù)科護(hù)理工作總結(jié)及計(jì)劃
- 基于VMI的庫存管理
- 建筑工程鋼結(jié)構(gòu)焊接變形的控制措施
評(píng)論
0/150
提交評(píng)論