立體幾何初步-2025年高考數(shù)學(xué)一輪復(fù)習(xí)_第1頁(yè)
立體幾何初步-2025年高考數(shù)學(xué)一輪復(fù)習(xí)_第2頁(yè)
立體幾何初步-2025年高考數(shù)學(xué)一輪復(fù)習(xí)_第3頁(yè)
立體幾何初步-2025年高考數(shù)學(xué)一輪復(fù)習(xí)_第4頁(yè)
立體幾何初步-2025年高考數(shù)學(xué)一輪復(fù)習(xí)_第5頁(yè)
已閱讀5頁(yè),還剩63頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題13立體幾何初步

(思維構(gòu)建+知識(shí)盤點(diǎn)+重點(diǎn)突破+方法技巧)

維構(gòu)建?耀蓿陳紿

K空間幾何體的結(jié)構(gòu)特征)

題型01空間幾何體的結(jié)構(gòu)特征

題型02空間幾何體的直觀圖問(wèn)題

。知識(shí)點(diǎn)-空間幾何體的結(jié)構(gòu)特征

K\______________________________________/-(旋轉(zhuǎn)體的結(jié)構(gòu)特征)題型03與球有關(guān)的截面問(wèn)題

題型04與球有關(guān)的外接內(nèi)切問(wèn)題

L(空間幾何體的直觀圖)

題型01空間幾何體的表面積計(jì)算

O知識(shí)點(diǎn)二空間幾何體的表面積和體積柱體'推體'臺(tái)體側(cè)面積間的關(guān)系題型02空間幾何體的體積計(jì)算

題型03空間幾何體的最短路徑問(wèn)題

柱體、錐體、臺(tái)體體積間的關(guān)系

一:四個(gè)公理

題型01異面直線的判斷

)直線與直線的位置關(guān)系

體題型02求異面直線所成角

f。知識(shí)點(diǎn)三點(diǎn)、直線、平面之間的位置關(guān)系題型03共線共點(diǎn)共面的判斷證明

幾題型04平面基本性質(zhì)與等角定理應(yīng)用

直線與平面的位置關(guān)系'

「兩個(gè)平面的位置關(guān)系

步定義題型01線面啊言]證明

判定定理與性質(zhì)定理

題型02線面平行性質(zhì)定理的應(yīng)用

敷題型03面面平行1的證明

知識(shí)點(diǎn)四直線、平面平行的判定與性質(zhì)下面寫平面平行(

O題型04面面平行質(zhì)定理應(yīng)用

題型05立體幾何幾何中的截面問(wèn)題

直線與平面垂直

T1)(判定定理與性質(zhì)定理,;

T;直線和平面所成的角]題型01線線垂直的證明

題型02線面垂直的證明

知識(shí)點(diǎn)五直線、平面垂直的判定與性質(zhì):一二面角:題型03面面垂直的證明

T平面與平面垂直;一「平面和平面垂直的定義;題型04空間線面角的求解

題型05空間二面角的求解

一判定定理與性質(zhì)誕

一垂直關(guān)系之間的轉(zhuǎn)化

口雙盤點(diǎn)?置;層升米

知識(shí)點(diǎn)1空間幾何體的結(jié)構(gòu)特征

1、多面體的結(jié)構(gòu)特征

名稱棱柱棱錐棱臺(tái)

D'

Ac

圖形卷

>AB4BAB

底面互相平行且全等多邊形互相平行且相似

側(cè)棱平行且相等相交于一點(diǎn),但不一定相等延長(zhǎng)線交于一點(diǎn),但不一定相等

側(cè)面形狀平行四邊形三角形梯形

2、特殊的棱柱和棱錐

(1)側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正

多邊形,側(cè)棱垂直于底面,側(cè)面是矩形.

(2)底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱長(zhǎng)均相

等的正三棱錐叫做正四面體.反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的

中心.

【注意】(1)棱柱的所有側(cè)面都是平行四邊形,但側(cè)面都是平行四邊形的幾何體卻不一定是棱柱.

(2)棱臺(tái)的所有側(cè)面都是梯形,但側(cè)面都是梯形的幾何體卻不一定是棱臺(tái).

(3)注意棱臺(tái)的所有側(cè)棱相交于一點(diǎn).

3、旋轉(zhuǎn)體的結(jié)構(gòu)特征

名稱圓柱圓錐圓臺(tái)球

圖形4@

旋轉(zhuǎn)圖形矩形直角三角形直角梯形半圓形

任一直角邊所在的垂直于底邊的腰直徑所在的

旋轉(zhuǎn)軸任一邊所在的直線

直線所在的直線直線

互相平行且相等,垂直

母線相交于一點(diǎn)延長(zhǎng)線交于一點(diǎn)

于底面

軸截面全等的矩形全等的等腰三角形全等的等腰梯形圓

側(cè)面展開圖矩形扇形扇環(huán)

4、空間幾何體的直觀圖

(1)畫法:常用斜二測(cè)畫法.

(2)規(guī)則:

①原圖形中無(wú)軸、y軸、z軸兩兩垂直,直觀圖中,尤釉、y軸的夾角為45。(或135°),z,軸與7軸和y

軸所在平面垂直.

②原圖形中平行于坐標(biāo)軸的線段,直觀圖中仍平行于坐標(biāo)軸;平行于x軸和z軸的線段在直觀圖中保

持原長(zhǎng)度不變;平行于y軸的線段長(zhǎng)度在直觀圖中變?yōu)樵瓉?lái)的一半.

(3)直觀圖與原圖形面積的關(guān)系

按照斜二測(cè)畫法得到的平面圖形的直觀圖與原圖形面積的關(guān)系:S直觀圖=坐5原圖物S原圖形=2吸S直觀圖.

知識(shí)點(diǎn)2空間幾何體的表面積和體積

1、空間幾何體的表面積和體積公式

表面積體積

幾何體

柱體(棱柱和圓柱)S表面積=S側(cè)+2s底v=s底場(chǎng)

v=gs底

錐體(棱錐和圓錐)S表面積=S側(cè)+S底

臺(tái)體(棱臺(tái)和圓臺(tái))S表面積=S側(cè)+S上+S下

42

球S=4兀K兀R

幾何體的表面積和側(cè)面積的注意點(diǎn)

①幾何體的側(cè)面積是指(各個(gè))側(cè)面面積之和,而表面積是側(cè)面積與所有底面面積之和.

②組合體的表面積應(yīng)注意重合部分的處理.

2、柱體、錐體、臺(tái)體側(cè)面積間的關(guān)系

(1)當(dāng)正棱臺(tái)的上底面與下底面全等時(shí),得到正棱柱;當(dāng)正棱臺(tái)的上底面縮為一個(gè)點(diǎn)時(shí),得到正棱錐,

c,=c1c'=01

貝US正棱柱側(cè)=。。'<---------S正棱臺(tái)側(cè)=5(c+c')/z'----->S正棱錐側(cè)=2ch,-

(2)當(dāng)圓臺(tái)的上底面半徑與下底面半徑相等時(shí),得到圓柱;當(dāng)圓臺(tái)的上底面半徑為零時(shí),得到圓錐,

P=丫y=o

貝!!S圓柱側(cè)=2兀/7<-----S圓臺(tái)側(cè)卜,)/---------->S圓錐側(cè)=兀力.

3、柱體、錐體、臺(tái)體體積間的關(guān)系

%鳥(5'+后亂5)/>

V^Sh恒住駟

知識(shí)點(diǎn)3點(diǎn)、直線、平面之間的位置關(guān)系

1、四個(gè)公理

(1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi).

作用:判斷一條直線是否在某個(gè)平面內(nèi)的依據(jù)

(2)公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面.

【拓展】公理2的三個(gè)推論

推論1:經(jīng)過(guò)一條直線和這條直線處上點(diǎn)有且只有一個(gè)平面.

推論2:經(jīng)過(guò)兩條相交直線有且只有一個(gè)平面.

推論3:經(jīng)過(guò)兩條平行直線有且只有一個(gè)平面.

作用:公理2及其推論是判斷或證明點(diǎn)、線共面的依據(jù)

(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),則它們有且只有一條過(guò)該點(diǎn)的公共直線.

作用:公理3是證明三線共點(diǎn)或三點(diǎn)共線的依據(jù)

(4)公理4:平行于同一條直線的兩條直線互相平行.

2、等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).

3、直線與直線的位置關(guān)系

(1)空間兩條直線的位置關(guān)系

位置關(guān)系特點(diǎn)

相交同一平面內(nèi),有且只有一個(gè)公共點(diǎn)

平行同一平面內(nèi),沒(méi)有公共點(diǎn)

異面直線不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)

(2)異面直線所成的角

①定義:設(shè)a,b是兩條異面直線,經(jīng)過(guò)空間任一點(diǎn)。作直線alia,b'\\b,把#與》所成的銳角(或直角)

叫做異面直線a與b所成的角(或夾角).

②范圍:(0°,90°].

4、直線與平面的位置關(guān)系

直線a在平面a外

位置關(guān)系直線a在平面a內(nèi)

直線a與平面a相交直線a與平面a平行

公共點(diǎn)無(wú)數(shù)個(gè)公共點(diǎn)一個(gè)公共點(diǎn)沒(méi)有公共點(diǎn)

符號(hào)表示auaAalia

---a

圖形表示

5、兩個(gè)平面的位置關(guān)系

位置關(guān)系兩平面平行兩平面相交

公共點(diǎn)沒(méi)有公共點(diǎn)有無(wú)數(shù)個(gè)公共點(diǎn)(在一條直線上)

符號(hào)表示a\\^aC0=l

^^7

圖形表示

%/

知識(shí)點(diǎn)4直線、平面平行的判定與性質(zhì)

1、直線與平面平行

(1)直線與平面平行的定義:直線/與平面a沒(méi)有公共點(diǎn),則稱直線/與平面a平行.

(2)判定定理與性質(zhì)定理

文字語(yǔ)言圖形表示符號(hào)表示

平面外一條直線與此平面內(nèi)abua,

判定定理

的一條直線平行,則該直線a\\b=〃||a

平行于此平面

一條直線和一個(gè)平面平行,

5alia,au0,

性質(zhì)定理則過(guò)這條直線的任一平面與

aC\/3=b^a\\b

此平面的交線與該直線平行

2、平面與平面平行

(1)平面與平面平行的定義:沒(méi)有公共點(diǎn)的兩個(gè)平面叫做平行平面.

(2)判定定理與性質(zhì)定理

文字語(yǔ)言圖形表示符號(hào)表示

一個(gè)平面內(nèi)的兩條相交直線與另一aua,bua,P,

判定定理

個(gè)平面平行,則這兩個(gè)平面平行//

兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的

/X/all.ac.a=>a\\/3

直線平行于另一個(gè)平面%/

性質(zhì)定理

如果兩個(gè)平行平面同時(shí)和第三個(gè)平

all夕,aC\y=a,^C\y=b=>a\\b

面相交,那么它們的交線平行

3、平行關(guān)系之間的轉(zhuǎn)化

性質(zhì)定理

?判定定理小HE,-判定定理?

線線平行、、線面平行、、面面平行

性質(zhì)定理性質(zhì)定理?

判定定理

在證明線面、面面平行時(shí),一般遵循從“低維”到“高維”的轉(zhuǎn)化,即從“線線平行”到“線面平行”,再到“面

面平行”;而在應(yīng)用性質(zhì)定理時(shí),其順序恰好相反,但也要注意,轉(zhuǎn)化的方向是由題目的具體條件而定的,

不可過(guò)于“模式化”.

知識(shí)點(diǎn)5直線、平面垂直的判定與性質(zhì)

1、直線與平面垂直

(1)定義:直線/與平面a內(nèi)的任意一條直線都垂直,就說(shuō)直線/與平面a互相垂直.

(2)判定定理與性質(zhì)定理

文字語(yǔ)言圖形語(yǔ)言符號(hào)語(yǔ)言

一條直線與一個(gè)平面內(nèi)的兩a,bua、

1

aC\b=O

判定定理?xiàng)l相交直線都垂直,則該直

刁Ila

線與此平面垂直

lib>

垂直于同一個(gè)平面的兩條直ala]

性質(zhì)定理-

線平行

2、直線和平面所成的角

(1)定義:平面的一條斜線和它在平面上的射影所成的銳角叫做這條直線和這個(gè)平面所成的角,一條直線

垂直于平面,則它們所成的角是直角;一條直線和平面平行或在平面內(nèi),則它們所成的角是

7T

(2)范圍:0,2?

3、平面與平面垂直

(1)二面角的有關(guān)概念

①二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角.

②二面角的平面角:在二面角的棱上任取一點(diǎn),以該點(diǎn)為垂足,在兩個(gè)半平面內(nèi)分別作垂直于棱的兩

條射線,這兩條射線所構(gòu)成的角叫做二面角的平面角.

(2)平面和平面垂直的定義

兩個(gè)平面相交,如果所成的二面角是直二面角,就說(shuō)這兩個(gè)平面互相垂直.

(3)平面與平面垂直的判定定理與性質(zhì)定理

文字語(yǔ)言圖形語(yǔ)言符號(hào)語(yǔ)言

一個(gè)平面過(guò)另一個(gè)平面的311a]

判定定理

垂線,則這兩個(gè)平面垂直

兩個(gè)平面垂直,則一個(gè)平面a邛、

IU0

性質(zhì)定理內(nèi)垂直于交線的直線與另>=/_La

aC\/S=a

一個(gè)平面垂直匚

£Ila>

謹(jǐn)記五個(gè)結(jié)論

(1)若兩平行線中的一條垂直于一個(gè)平面,則另一條也垂直于這個(gè)平面.

(2)若一條直線垂直于一個(gè)平面,則它垂直于這個(gè)平面內(nèi)的任何一條直線(證明線線垂直的一個(gè)重要方法).

(3)垂直于同一條直線的兩個(gè)平面平行.

(4)一條直線垂直于兩平行平面中的一個(gè),則這一條直線與另一個(gè)平面也垂直.

(5)兩個(gè)相交平面同時(shí)垂直于第三個(gè)平面,它們的交線也垂直于第三個(gè)平面.

4、垂直關(guān)系之間的轉(zhuǎn)化

在證明線面垂直、面面垂直時(shí),一定要注意判定定理成立的條件.同時(shí)抓住線線、線面、面面垂直的

轉(zhuǎn)化關(guān)系,即:

判定

I1

線線垂直^^二線面垂直^^面面垂直

f■質(zhì)性質(zhì)

性質(zhì)

在證明兩平面垂直時(shí),一般先從現(xiàn)有的直線中尋找平面的垂線,若這樣的直線在圖中不存在,則可通

過(guò)作輔助線來(lái)解決.

X重點(diǎn)突破?塞分?必將

重難點(diǎn)01幾何法求空間二面角

求二面角大小的一般步驟

(1)作:找出這個(gè)平面角;

(2)證:證明這個(gè)角是二面角的平面角;

(3)求:將作出的角放在三角形中,解這個(gè)三角形,計(jì)算出平面角的大小.

【典例1](23-24高三下?內(nèi)蒙古錫林郭勒盟?模擬預(yù)測(cè))在四面體ABCP中,平面ABC,平面尸AC,^PAC

是直角三角形,PA=PC=4,AB=BC=3,則二面角A—PC-3的正切值為.

【典例2](23-24高三下?四川成都?模擬預(yù)測(cè))如圖所示,斜三棱柱ABC-4B|G的各棱長(zhǎng)均為2,側(cè)棱B片

1T

與底面ABC所成角為],且側(cè)面AM4,底面ABC.

514

C

(1)證明:點(diǎn)耳在平面ABC上的射影。為的中點(diǎn);

⑵求二面角C-4與-8的正切值.

TT

【典例3](23-24高三下.江西南昌.三模)如圖1,四邊形ABCD為菱形,ZABC--,E,尸分別為AD,

OC的中點(diǎn),如圖2.將VABC沿AC向上折疊,使得平面ABC,平面ACEE,將ADEF沿E尸向上折疊.使

得平面D£F_L平面ACFE,連接BD.

(1)求證:A,B,D,E四點(diǎn)共面:

(2)求平面AEZ汨與平面FD8C所成角的余弦值.

重難點(diǎn)02外接球和內(nèi)切球的解題思路

1、求解幾何體外接球的半徑的思路

(1)根據(jù)球的截面的性質(zhì),利用球的半徑R、截面圓的半徑,及球心到截面圓的距離d三者的關(guān)系

代=/+/求解,其中,確定球心的位置是關(guān)鍵;

(2)將幾何體補(bǔ)成長(zhǎng)方體,如本例(2),利用該幾何體與長(zhǎng)方體共有外接球的特征,由外接球的直徑等于長(zhǎng)

方體的體對(duì)角線長(zhǎng)求解.

2、解決與球有關(guān)的切、接問(wèn)題,其通法是作截面,將空間幾何問(wèn)題轉(zhuǎn)化為平面幾何問(wèn)題求解,其解題的思

維流程是:

第一步定球心:如果是內(nèi)切球,則球心到切點(diǎn)的距離相等且為半徑;如果是外接球,則球心到接點(diǎn)的距離

相等且為半徑;

第二步作截面:選準(zhǔn)最佳角度作截面(要使這個(gè)截面盡可能多的包含球、幾何體的各種元素以及體現(xiàn)這些

元素間的關(guān)系),達(dá)到空間問(wèn)題平面化的目的;

第三步求半徑、下結(jié)論:根據(jù)作出的截面中的幾何元素,建立關(guān)于球半徑的方程,并求解。

【典例1](23-24高三下?陜西榆林.模擬預(yù)測(cè))如圖,VABC是邊長(zhǎng)為4的正三角形,。是的中點(diǎn),沿

4。將VA3c折疊,形成三棱錐A-BCD.當(dāng)二面角B-AD-C為直二面角時(shí),三棱錐A-BCD外接球的體

積為()

AA

A.5兀B.20TIC.£1工D.22叵

63

【典例2](23-24高三下?陜西寶雞?三模)VABC與都是邊長(zhǎng)為2的正三角形,沿公共邊48折疊成

三棱錐且C。長(zhǎng)為君,若點(diǎn)A,B,C,。在同一球。的球面上,則球。的表面積為()

【典例3](23-24高三下.新疆烏魯木齊三模)三棱錐A-BCD中,AD,平面ABC,ZBAC=60P,AB=l,

AC=2,AD=4,則三棱錐A-BCD外接球的表面積為()

A.lOnB.20兀C.25TID.30兀

【典例4](24-25高三上?江蘇南通?月考)如圖,在三棱錐尸-ABC中,NAC5=60。,2AC=BC=PB=PC,

平面P3C_L平面ABC,。是3c的中點(diǎn),PD=4下,則三棱錐尸-ACD的外接球的表面積為()

重難點(diǎn)03空間幾何體中的探索性問(wèn)題

1、立體幾何中的探索性問(wèn)題立體幾何中的探索性問(wèn)題的主要類型

①探索條件,即探索能使結(jié)論成立的條件是什么.

②探索結(jié)論,即在給定的條件下,探索命題的結(jié)論是什么.

2、對(duì)命題條件探索的三種方法:

①先猜后證,即先觀察與嘗試給出條件再證明.

②先通過(guò)命題成立的必要條件探索出命題成立的條件,再證明其充分性.

③把幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題,探索命題成立的條件.

3、對(duì)命題結(jié)論探索的方法首先假設(shè)結(jié)論成立,然后在這個(gè)假設(shè)下進(jìn)行推理論證,如果通過(guò)推理得到了合乎

情理的結(jié)論就肯定假設(shè),如果得到了矛盾的結(jié)果就否定假設(shè).

【典例1](23-24高三上?遼寧?期末)(多選)已知正方體ABC。-A4G2,點(diǎn)P滿足

麗=4蔗+〃函',4e[0,1],0,1],下列說(shuō)法正確的是()

A.存在無(wú)窮多個(gè)點(diǎn)P,使得過(guò)〃,民尸的平面與正方體的截面是菱形

B.存在唯一一點(diǎn)尸,使得反〃平面AC。

C.存在無(wú)窮多個(gè)點(diǎn)P,使得APLBQ

D.存在唯一一點(diǎn)P,使得。尸,平面4G。

【典例2](23-24高三下?上海黃浦?月考)如圖,在四棱錐尸-ABCD中,底面ABCD為矩形,平面平

面ABC。,PA.LPD,PA=PD,E為的中點(diǎn).

⑴求證:PE1BC;

(2)在線段PC上是否存在點(diǎn)M,使得ZW〃平面PEB?請(qǐng)說(shuō)明理由

【典例3】⑵3高三下?浙江紹興?月考)如圖'已知三棱臺(tái)ABC-MG的體積為當(dāng)‘平面"叫‘平

面BCC4,VABC是以B為直角頂點(diǎn)的等腰直角三角形,且AB=2AA=2A4=2BB],

(1)證明:3C,平面AB21A;

(2)求點(diǎn)8到面ACCH的距離;

(3)在線段cq上是否存在點(diǎn)歹,使得二面角尸-AB-C的大小為若存在,求出c尸的長(zhǎng),若不存在,請(qǐng)

0

說(shuō)明理由.

重難點(diǎn)04空間幾何體中的截面問(wèn)題

作截面的幾種方法

(1)直接法:有兩點(diǎn)在幾何體的同一個(gè)面上,連接該兩點(diǎn)即為幾何體與截面的交線,找截面實(shí)際就是找交

線的過(guò)程。

(2)延長(zhǎng)線法:同一個(gè)平面有兩個(gè)點(diǎn),可以連線并延長(zhǎng)至與其他平面相交找到交點(diǎn)。

(3)平行線法:過(guò)直線與直線外一點(diǎn)作截面,拖直線所在的面與點(diǎn)所在的平面平行,可以通過(guò)過(guò)點(diǎn)找直線

的平行線找到幾何體的截面的交線。

【典例11(23-24高三下?河南?月考)在正方體ABCD-A4GQ中,朋=4,P為CQ的中點(diǎn),E在棱A,A上,

且則過(guò)E且與4,垂直的平面截正方體43。0-4耳62所得截面的面積為()

A.6B.8C.12D.16

【典例2](23-24高三下?四川瀘州三模)已知正方體ABC。-ABCQ的棱長(zhǎng)為2,尸為。Q的中點(diǎn),過(guò)A,

B,尸三點(diǎn)作平面則該正方體的外接球被平面。截得的截面圓的面積為()

137116K14K

A.C.3兀D.

T丁丁

法技巧?逆境學(xué)霸

一、求空間幾何體表面積的常見(jiàn)類型及思路

1、求多面體的表面積:只需將它們沿著棱“剪開”展成平面圖形,利用求平面圖形面積的方法求多面體的表

面積;

2、求旋轉(zhuǎn)體的表面積:可以從旋轉(zhuǎn)體的形成過(guò)程及其幾何特征入手,將其展開后求表面積,但要搞清它們

的底面半徑、母線長(zhǎng)與對(duì)應(yīng)側(cè)面展開圖中的邊長(zhǎng)關(guān)系

3、求不規(guī)則幾何體的表面積:通常將所給幾何體分割成基本的柱體、錐體、臺(tái)體,先求出這些基本的柱體、

錐體、臺(tái)體的表面積,再通過(guò)求和或作差,求出所給幾何體的表面積;

【注意】在求解組合題的表面積時(shí),注意幾何體表面的構(gòu)成,尤其是重合部分,面積不要多加或少加

【典例1](24-25高三上?廣東?三校聯(lián)合模擬)一個(gè)圓臺(tái)的上、下底面的半徑分別為1和4,高為4,則它的

表面積為()

A.41nB.42TIC.29宿D(zhuǎn).(18+7石)兀

【典例2】(23-24高三下?河南濮陽(yáng)?模擬預(yù)測(cè))正四棱臺(tái)ABC。-A4G2中,上底面邊長(zhǎng)為2,下底面邊長(zhǎng)

為4,若側(cè)面與底面所成的二面角為60。,則該正四棱臺(tái)的側(cè)面積為()

A.8B.12C.24D.48

【典例3](23-24高三下.江蘇無(wú)錫?模擬預(yù)測(cè))蒙古包是我國(guó)蒙古族牧民居住的房子,適于牧業(yè)生產(chǎn)和游牧

生活.如圖所示的蒙古包由圓柱和圓錐組合而成,其中圓柱的高為2m,底面半徑為4m,。是圓柱下底面的

圓心.若圓錐的側(cè)面與以。為球心,半徑為4m的球相切,則圓錐的側(cè)面積為()

A.8>/5n:m2B.16\/57tm2C.207tm2D.407tm2

二、空間幾何體的體積

1、處理空間幾何體體積的基本思路

(1)轉(zhuǎn):轉(zhuǎn)換底面與高,將原本不容易求面積的底面轉(zhuǎn)換為容易求面積的底面,或?qū)⒃瓉?lái)不容易看出的高

轉(zhuǎn)換為容易看出并容易求解的高;

(2)拆:將一個(gè)不規(guī)則的幾何體拆成幾個(gè)規(guī)則的幾何體,便于計(jì)算;

(3)拼:將小幾何體嵌入一個(gè)大幾何體中,如有時(shí)將一個(gè)三棱錐復(fù)原成一個(gè)三棱柱,將一個(gè)三棱柱復(fù)原乘

一個(gè)四棱柱,還臺(tái)位錐,這些都是拼補(bǔ)的方法。

2、求體積的常用方法

(1)直接法:對(duì)于規(guī)則的幾何體,利用相關(guān)公式直接計(jì)算;

(2)割補(bǔ)法:把不規(guī)則的幾何體分割成規(guī)則的幾何體,然后進(jìn)行體積計(jì)算;或者把不規(guī)則的幾何體補(bǔ)成規(guī)

則的幾何體,不熟悉的幾何體補(bǔ)成熟悉的幾何體,便于計(jì)算;

(3)等體積法:選擇合適的底面來(lái)求幾何體的體積,常用于求三棱錐的體積,即利用三棱錐的任一個(gè)面作

為三棱錐的底面進(jìn)行等體積變換

【典例11(24-25高三上?福建福州?開門考)如圖是一個(gè)圓臺(tái)的側(cè)面展開圖,若兩個(gè)半圓的半徑分別是1和2,

則該圓臺(tái)的體積是()

70兀7島

1212

【典例2](23-24高三下?內(nèi)蒙古包頭?三模)如圖,已知正方形ABC。為圓柱的軸截面,AB=BC=2,E,

產(chǎn)為上底面圓周上的兩個(gè)動(dòng)點(diǎn),且EF過(guò)上底面的圓心G,若則三棱錐A-3EF的體積為()

2后273

r"V

【典例3](23-24高三下.新疆.二模)我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一種稱為“羨除”的幾何體,

該幾何體的一種結(jié)構(gòu)是三個(gè)面均為梯形,其他兩面為三角形的五面體.如圖所示,四邊形ABCD,ABFE,

CDEV均為等腰梯形,AB//CD//EF,AB=6,CD=8,EF=10,砂到平面ABCO的距離為5,CD^AB

間的距離為10,則這個(gè)羨除的體積V=.

三、共線共點(diǎn)共面證明方法

1、證明點(diǎn)或線共面問(wèn)題的2種方法

(1)首先由所給條件中的部分線(或點(diǎn))確定一個(gè)平面,然后再證其余的線(或點(diǎn))在這個(gè)平面內(nèi);

(2)將所有條件分為兩部分,然后分別確定平面,再證兩平面重合.

2、證明點(diǎn)共線問(wèn)題的2種方法

(1)先由兩點(diǎn)確定一條直線,再證其他各點(diǎn)都在這條直線上;

(2)直接證明這些點(diǎn)都在同一條特定直線(如某兩個(gè)平面的交線)上.

3、證明線共點(diǎn)問(wèn)題的常用方法

先證其中兩條直線交于一點(diǎn),再證其他直線經(jīng)過(guò)該點(diǎn).

【典例1](23-24高三下.湖南.二模)如圖,在三棱柱中,"尸6"分別為8綜久],4為46

的中點(diǎn),則下列說(shuō)法錯(cuò)誤的是()

A.E,£G,H四點(diǎn)共面B.EF//GH

C.EG,尸乩四三線共點(diǎn)D.NEGB[=NFHG

【典例2](23-24高三上?遼寧?名校聯(lián)考)點(diǎn)、E、F、G、〃分別在空間四邊形ABCD的邊AB,2C,CD,D4上,

若EFIIGH,則下列說(shuō)法中正確的是()

A.直線與FG一定平行B.直線與尸G一定相交

C.直線£77與FG可能異面D.直線E”與尸G一定共面

JT

【典例3】(23-24高三下高三?全國(guó)?專題練習(xí))如圖1,四邊形ABCD為菱形,ZABC=-,E,尸分別為AO,

DC的中點(diǎn).如圖2,將VABC沿AC向上折疊,使得平面ABC,平面ACFE,將ADEF沿歷向上折疊.使

得平面DEF_L平面ACFE.求證:A,8,r>,E四點(diǎn)共面.

四、證明直線與平面平行的方法

1、線面平行的定義:一條直線與一個(gè)平面無(wú)公共點(diǎn)(不相交).

2、線面平行的判定定理:關(guān)鍵是找到平面內(nèi)與已知直線平行的直線.常利用三角形的中位線、平行四邊形

的對(duì)邊、成比例線段出現(xiàn)平行線或過(guò)已知直線作一平面找其交線.

3、面面平行的性質(zhì):①兩個(gè)平面平行,在一個(gè)平面內(nèi)的任意一條直線平行于另外一個(gè)平面,即a||[3,aua今a||[3;

②兩個(gè)平面平行,不在兩個(gè)平面內(nèi)的一條直線與其中一個(gè)平面平行,則這條直線與另一平面也平行,即alip,

aCa,aCP,a||a=>a||p.

【典例1](23-24高三上?廣東佛山?月考)如圖,點(diǎn)A,B,C,M,N為正方體的頂點(diǎn)或所在棱的中點(diǎn),則

下列各圖中,不滿足直線MN//平面ABC的是()

【典例2](24-25高三上?全國(guó)?專題練習(xí))如圖,四棱錐尸-ABC。的底面是菱形,平面底面ABCD,

E,尸分別是AB,PC的中點(diǎn),AB=6,DP=AP=5,440=60°.求證:EF〃平面PAD;

P

【典例3](23-24高三下.陜西商洛?模擬預(yù)測(cè))如圖,在四棱錐尸-ABCD中,四邊形A3CD是矩形,M,N

分別是尸£>和3C的中點(diǎn),平面E45_L平面ABCD,R1=P3=A5=AD=2.

(1)證明:MN//平面R4B;

(2)求三棱錐M-ABC的體積.

五、證明面面平行的常用方法

1、利用面面平行的定義.

2、利用面面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行.

3、利用“垂直于同一條直線的兩個(gè)平面平行”.

4、利用“如果兩個(gè)平面同時(shí)平行于第三個(gè)平面,那么這兩個(gè)平面平行”.

5、利用“線線平行”“線面平行”“面面平行”的相互轉(zhuǎn)化.

【典例1](23-24高三下高三.全國(guó)?專題練習(xí))如圖,在圓錐S。中,若軸截面&48是正三角形,C為底面

圓周上一點(diǎn),尸為線段04上一點(diǎn),D(不與S重合)為母線上一點(diǎn),過(guò)。作OE垂直底面于E,連接

OE,EF,DF,CF,CD,且ZCOF=NEFO.求證:平面SCO//平面DEF.

【典例2X23-24高三下?陜西西安?期中)如圖,在圓臺(tái)。。中,A4網(wǎng)為軸截面,==4,A\AB=6Q0,

C為下底面圓周上一點(diǎn),P為下底面圓。內(nèi)一點(diǎn),AE垂直下底面圓。于點(diǎn)E,NCOF=NEFO.

(1)求證:平面OQC〃平面4匹;

(2)若△班'。為等邊三角形,求點(diǎn)E到平面4。尸的距離.

【典例3】(23-24高三下?四川瀘州三模)如圖,在四棱錐尸-ABCD中,底面A3CD是矩形,AB=2,BC=2y/3,

AC與8。交于點(diǎn)。,OP,底面ABCD,0P=6點(diǎn)、E,尸分別是棱PA,的中點(diǎn),連接OE,OF,EF.

(1)求證:平面。EF〃平面PCD;

(2)求三棱錐ABE的體積.

六、證明線面垂直的方法

1、線面垂直的判定定理:/la,lib,aua,bca,aCb=P』La.

2、面面垂直的性質(zhì)定理:a邛,aC0=l,aua,aU=a邛.

3、性質(zhì):①a||b,6_La=ala;②a||£,a邛nala.

4、aly,£1〉,anS=/=/_L/(客觀題可用)

【典例1](23-24高三下.江西.月考改編)如圖,在三棱錐P-ABC中,ARIB是等邊三角形,

AC_LA8,AC=N8,點(diǎn)。在BC上,即=或),尸。_1平面9£).證明:AD_L平面PB.

【典例2](23-24高三下.湖南?月考)如圖所示,正四棱錐尸-ABCD中,AB=3垃,PA=3#,M,N濟(jì)別為

PA,PC的中點(diǎn),PE=2BE,平面EW與PD交于G.證明:PD_L平面EMGN.

【典例3](23-24高三下?廣東?二模改編)如圖,在直三棱柱ABC-A耳G中,點(diǎn)£)是CQ的中點(diǎn),

AC=BC,A4=AB.證明:4耳,平面480.

B

七、證明面面垂直的兩種方法

法1:利用面面垂直的定義,即判定兩平面所成的二面角為直二面角,將證明面面垂直問(wèn)題轉(zhuǎn)化為證明平面

角為直角問(wèn)題;

法2:利用面面垂直的判定定理,即證明其中一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,把問(wèn)題轉(zhuǎn)化為證明線線

垂直加以解決。

【典例1](22-23高三上?江西南昌?月考)如圖,長(zhǎng)方體ABCO-ASGQ中,底面ABC。是正方形,

AAj=2AB=2,E是。A上的一點(diǎn)且=g.

(1)求證:平面平面AEC;

(2)求三棱錐4-ACE的體積.

【典例21(23-24高三下?四川資陽(yáng)?二模)如圖,在四面體ABCD中,AB=AC=AD=BC=BD=2,BC±BD,

E,E分別為AB,AC的中點(diǎn).

(1)證明:平面ACD_L平面BCD;

(2)求點(diǎn)A到平面BDF的距離.

【典例3](23-24高三下?安徽.三模改編)如圖,在三棱錐S-4JC中,BC,AC,SA=SB=SC,M,N分別為

棱SA,SC的中點(diǎn).證明:平面平面A2C.

八、平移法求異面直線所成角的步驟

第一步平移:平移的方法一般有三種類型:(1)利用圖中已有的平行線平移;(2)利用特殊點(diǎn)(線段的端點(diǎn)或中

點(diǎn))作平行線平移;(3)補(bǔ)形平移

第二步證明:證明所作的角是異面直線所成的角或其補(bǔ)角

第三步尋找:在立體圖形中,尋找或作出含有此角的三角形,并解之

第四步取舍:因?yàn)楫惷嬷本€所成角。的取值范圍是0?!瓷?0。,所以所作的角為鈍角時(shí),應(yīng)取它的補(bǔ)角作為

異面直線所成的角

【典例1](23-24高三下?云南.二模)如圖,在正方體ABCD-A瓦C2中,E、F、M,N分別是

DR、D£、BC、8用的中點(diǎn),則異面直線EF與所成角的大小為()

7171c兀

A.—c.D.-

6-72

【典例2](23-24高三下.河北保定?月考)如圖,正三棱柱ABC-A與G的各棱長(zhǎng)相等,。為A4的中點(diǎn),

則異面直線46與CQ所成角的余弦值為()

B.4£

C.D.0

A-T2

【典例3](23-2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論