版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省新鄉(xiāng)市數(shù)學高三上期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內(nèi)隨機取N個點,經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.2.已知數(shù)列,,,…,是首項為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.43.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數(shù)值的個數(shù)為()A.1 B.2 C.3 D.45.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.56.函數(shù)(),當時,的值域為,則的范圍為()A. B. C. D.7.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則8.閱讀如圖所示的程序框圖,運行相應的程序,則輸出的結果為()A. B.6 C. D.9.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現(xiàn)了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元10.已知雙曲線()的漸近線方程為,則()A. B. C. D.11.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.12.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_________.14.在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為__________.15.函數(shù)在的零點個數(shù)為_________.16.已知矩形ABCD,AB=4,BC=3,以A,B為焦點,且過C,D兩點的雙曲線的離心率為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉(zhuǎn)得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當直線與平面所成的角取最大值時,求二面角的正弦值.18.(12分)設為實數(shù),已知函數(shù),.(1)當時,求函數(shù)的單調(diào)區(qū)間:(2)設為實數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個相異的零點,求的取值范圍.19.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.20.(12分)移動支付(支付寶及微信支付)已經(jīng)漸漸成為人們購物消費的一種支付方式,為調(diào)查市民使用移動支付的年齡結構,隨機對100位市民做問卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補充完整,并請說明在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡是否有關?(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進一步的問卷調(diào)查,從這10人隨機中選出3人頒發(fā)參與獎勵,設年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)21.(12分)某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.理科方向文科方向總計男110女50總計(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認為是否為“文科方向”與性別有關?(2)將頻率視為概率,現(xiàn)在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822.(10分)已知橢圓C的中心在坐標原點,其短半軸長為1,一個焦點坐標為,點在橢圓上,點在直線上,且.(1)證明:直線與圓相切;(2)設與橢圓的另一個交點為,當?shù)拿娣e最小時,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)比例關系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.2、A【解析】
根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點睛】本題考查了數(shù)列值的計算,意在考查學生的計算能力.3、D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標運算,離心率問題關鍵尋求關于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.4、C【解析】試題分析:根據(jù)題意,當時,令,得;當時,令,得,故輸入的實數(shù)值的個數(shù)為1.考點:程序框圖.5、C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點:復數(shù)的代數(shù)運算,復數(shù)相等的充要條件,復數(shù)的模6、B【解析】
首先由,可得的范圍,結合函數(shù)的值域和正弦函數(shù)的圖像,可求的關于實數(shù)的不等式,解不等式即可求得范圍.【詳解】因為,所以,若值域為,所以只需,∴.故選:B【點睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關鍵,側(cè)重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).7、C【解析】
根據(jù)空間中平行關系、垂直關系的相關判定和性質(zhì)可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.8、D【解析】
用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點睛】本題主要考查了循環(huán)結構的程序框圖的應用,正確依次寫出每次循環(huán)得到的與的值是解題的關鍵,難度較易.9、D【解析】
根據(jù)折線圖、柱形圖的性質(zhì),對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學生的閱讀能力、數(shù)據(jù)處理能力,屬于中檔題.10、A【解析】
根據(jù)雙曲線方程(),確定焦點位置,再根據(jù)漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎題.11、D【解析】
過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.12、B【解析】
三視圖對應的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點睛】本題考查三視圖以及不規(guī)則幾何體的體積,復原幾何體時注意三視圖中的點線關系與幾何體中的點、線、面的對應關系,另外,不規(guī)則幾何體的體積可用割補法來求其體積,本題屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出準線,過作準線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉(zhuǎn)化為點到準線的距離,利用平面幾何知識計算出直線的斜率.【詳解】設是準線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點睛】本題考查拋物線的焦點弦問題,解題關鍵是利用拋物線的定義,把拋物線上點到焦點距離轉(zhuǎn)化為該點到準線的距離,用平面幾何方法求解.14、【解析】
設是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.15、1【解析】
本問題轉(zhuǎn)化為曲線交點個數(shù)問題,在同一直角坐標系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結合思想進行求解即可.【詳解】問題函數(shù)在的零點個數(shù),可以轉(zhuǎn)化為曲線交點個數(shù)問題.在同一直角坐標系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當時,兩個函數(shù)只有一個交點.故答案為:1【點睛】本題考查了求函數(shù)的零點個數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結合思想.16、2【解析】
根據(jù)為焦點,得;又求得,從而得到離心率.【詳解】為焦點在雙曲線上,則又本題正確結果:【點睛】本題考查利用雙曲線的定義求解雙曲線的離心率問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標原點,以,,的方向為,,軸的正方向,建立空間直角坐標系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時,即,點為中點.,,,,,,,設平面的法向量,由,得,令,得,所以平面的法向量,同理,設平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學生的運算求解能力,是一道中檔題.18、(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【解析】
(1)據(jù)導數(shù)和函數(shù)單調(diào)性的關系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構造函數(shù),利用導數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導,再分類討論,根據(jù)導數(shù)和函數(shù)單調(diào)性以及最值得關系即可求出的范圍【詳解】解:(1)當時,因為,當時,;當時,.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設,,則,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數(shù)在上單調(diào)遞增,所以函數(shù)至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當時,,所以,所以,所以當時,函數(shù)的值域為.所以,存在,使得,即,①且當時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因為函數(shù)有兩個零點,,所以.②設,,則,所以函數(shù)在單調(diào)遞增,由于,所以當時,.所以,②式中的,又由①式,得.由第(1)小題可知,當時,函數(shù)在上單調(diào)遞減,所以,即.當時,(?。┯捎?所以得,又因為,且函數(shù)在上單調(diào)遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個零點;(ⅱ)由于,令,設,,由于時,,,所以設,即.由①式,得,當時,,且,同理可得函數(shù)在上也恰有一個零點.綜上,.【點睛】本題考查含參數(shù)的導數(shù)的單調(diào)性,利用導數(shù)求不等式恒成立問題,以及考查函數(shù)零點問題,考查學生的計算能力,是綜合性較強的題.19、(1);(2)【解析】
(1)由已知條件和正弦定理進行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設外接圓的半徑為,則由正弦定理得,,,.【點睛】本題考查運用三角形的正弦定理、余弦定理、三角形的面積公式,關鍵在于熟練地運用其公式,合理地選擇進行邊角互化,屬于基礎題.20、(1)列聯(lián)表見解析,在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關;(2)分布列見解析,期望為.【解析】
(1)根據(jù)題中所給的條件補全列聯(lián)表,根據(jù)列聯(lián)表求出觀測值,把觀測值同臨界值進行比較,得到能在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關.(2)首先確定的取值,求出相應的概率,可得分布列和數(shù)學期望.【詳解】(1)根據(jù)題意及列聯(lián)表可得完整的列聯(lián)表如下:35歲以下(含35歲)35歲以上合計使用移動支付401050不使用移動支付104050合計5050100根據(jù)公式可得,所以在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關.(2)根據(jù)分層抽樣,可知35歲以下(含35歲)的人數(shù)為8人,35歲以上的有2人,所以獲得獎勵的35歲以下(含35歲)的人數(shù)為,則的可能為1,2,3,且,,,其分布列為123.【點睛】獨立性檢驗依據(jù)的值結合附表數(shù)據(jù)進行判斷,另外,離散型隨機變量的分布列,在求解的過程中,注意變量的取值以及對應的概率要計算正確,注意離散型隨機變量的期望公式的使用,屬于中檔題目.21、(1)列聯(lián)表見解析,有;(2)分布列見解析,,.【解析】
(1)由頻率分布直方圖可得分數(shù)在、之間的學生人數(shù),可得列聯(lián)表.根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版摩托車二手交易評估與鑒定服務合同4篇
- 2025非全日制勞務派遣合同樣本:二零二五年度用工協(xié)議3篇
- 二零二五版廠房租賃合同標準:租賃廠房周邊環(huán)境維護責任3篇
- 2025年度環(huán)保監(jiān)測軟件服務升級及數(shù)據(jù)統(tǒng)計分析合同3篇
- 2025年度補充耕地指標出讓與農(nóng)業(yè)科技推廣合同3篇
- 二零二五年度古董藝術品售后服務與維權合同3篇
- 2025年度配音行業(yè)人才培養(yǎng)與輸送合同4篇
- 2025年度旅游紀念品采購合同書下載3篇
- 2025年度高速公路養(yǎng)護勞務分包合同范本
- 2025年度個人二手房交易合同樣本7篇
- 勞務協(xié)議范本模板
- 2024年全國職業(yè)院校技能大賽高職組(生產(chǎn)事故應急救援賽項)考試題庫(含答案)
- 2025大巴車租車合同范文
- 老年上消化道出血急診診療專家共識2024
- 人教版(2024)數(shù)學七年級上冊期末測試卷(含答案)
- 2024年國家保密培訓
- 2024年公務員職務任命書3篇
- CFM56-3發(fā)動機構造課件
- 會議讀書交流分享匯報課件-《殺死一只知更鳥》
- 2025屆撫州市高一上數(shù)學期末綜合測試試題含解析
- 公司印章管理登記使用臺賬表
評論
0/150
提交評論