版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
咸陽市重點中學2025屆高一上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.《九章算術(shù)》中“方田”章給出了計算弧田面積時所用的經(jīng)驗公式,即弧田面積=×(弦×矢+矢).弧田(如圖1)由圓弧和其所對弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,半徑為2米的弧田(如圖2),則這個弧田面積大約是()平方米.(,結(jié)果保留整數(shù))A.2 B.3C.4 D.52.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移個單位長度得到 B.向右平移個單位長度得到C.向左平移個單位長度得到 D.向右平移個單位長度得到3.已知全集,集合,集合,則集合為A. B.C. D.4.函數(shù)的定義域為()A. B.C. D.R5.已知函數(shù),則的()A.最小正周期,最大值為 B.最小正周期為,最大值為C.最小正周期為,最大值為 D.最小正周期為,最大值為6.一個幾何體的三視圖如圖所示,則幾何體的體積是()A. B.C. D.27.設(shè),則a,b,c的大小關(guān)系是A. B.C. D.8.函數(shù)與則函數(shù)所有零點的和為A.0 B.2C.4 D.89.已知函數(shù),若函數(shù)有四個零點,則的取值范圍是A. B.C. D.10.植物研究者在研究某種植物1-5年內(nèi)的植株高度時,將得到的數(shù)據(jù)用下圖直觀表示.現(xiàn)要根據(jù)這些數(shù)據(jù)用一個函數(shù)模型來描述這種植物在1-5年內(nèi)的生長規(guī)律,下列函數(shù)模型中符合要求的是()A.(且)B.(,且)C.D.二、填空題:本大題共6小題,每小題5分,共30分。11.關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是______12.調(diào)查某高中1000名學生的肥胖情況,得到的數(shù)據(jù)如表:偏瘦正常肥胖女生人數(shù)88175y男生人數(shù)126211z若,則肥胖學生中男生不少于女生的概率為_________13.一個幾何體的三視圖如圖所示(單位:),則該幾何體的體積為__________14.已知函數(shù),,若關(guān)于x的方程()恰好有6個不同的實數(shù)根,則實數(shù)λ的取值范圍為_______.15.若點在過兩點的直線上,則實數(shù)的值是________.16.函數(shù)fx=三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.近年來,我國大部分地區(qū)遭遇霧霾天氣,給人們的健康、交通安全等帶來了嚴重影響.經(jīng)研究發(fā)現(xiàn)工業(yè)廢氣等污染物排放是霧霾形成和持續(xù)的重要因素,污染治理刻不容緩.為此,某工廠新購置并安裝了先進的廢氣處理設(shè)備,使產(chǎn)生的廢氣經(jīng)過過濾后排放,以降低對空氣的污染.已知過濾過程中廢氣的污染物數(shù)量(單位:mg/L)與過濾時間(單位:h)間的關(guān)系為(,均為非零常數(shù),e為自然對數(shù)的底數(shù)),其中為時的污染物數(shù)量.若經(jīng)過5h過濾后還剩余90%的污染物.(1)求常數(shù)的值;(2)試計算污染物減少到40%至少需要多長時間.(精確到1h,參考數(shù)據(jù):,,,,)18.已知為第四象限角,且,求下列各式的值(1);(2)19.已知函數(shù).(1)若在上的最大值為,求的值;(2)若為的零點,求證:.20.某港口水深y(米)是時間t(0≤t≤24,單位:小時)的函數(shù),下面是水深數(shù)據(jù):t(小時)03691215182124y(米)10.013.09.97.010013.010.17.010.0據(jù)上述數(shù)據(jù)描成的曲線如圖所示,該曲線可近似的看成函數(shù)的圖象(1)試根據(jù)數(shù)據(jù)表和曲線,求的解析式;(2)一般情況下,船舶航行時船底與海底的距離不小于4.5米是安全的,如果某船的吃水度(船底與水面的距離)為7米,那么該船在什么時間段能夠安全進港?21.如圖,四棱錐的底面是菱形,,平面,是的中點.(1)求證:平面平面;(2)棱上是否存在一點,使得平面?若存在,確定的位置并加以證明;若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先由已知條件求出,然后利用公式求解即可【詳解】因為,所以,在中,,所以,所以,所以這個弧田面積為,故選:A2、A【解析】先利用輔助角公式將函數(shù)變形,然后利用圖象的平移變換分析求解即可【詳解】解:函數(shù),將函數(shù)圖象向左平移個單位可得的圖象故選:3、C【解析】,選C4、D【解析】利用指數(shù)函數(shù)的性質(zhì)即可得出選項.【詳解】指數(shù)函數(shù)的定義域為R.故選:D5、B【解析】利用輔助角公式化簡得到,求出最小正周期和最大值.【詳解】所以最小正周期為,最大值為2.故選:B6、B【解析】由三視圖可知此幾何體是由一個長為2,寬為,高為的長方體過三個頂點切去一角的空間多面體,如圖所示,則其體積為.故正確答案選B.考點:1.三視圖;2.簡單組合體體積.7、D【解析】運用對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性,利用中間值法進行比較即可.【詳解】,因此可得.故選:D【點睛】本題考查了對數(shù)式、指數(shù)式之間的大小比較問題,考查了對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性,考查了中間值比較法,屬于基礎(chǔ)題.8、C【解析】分析:分別作與圖像,根據(jù)圖像以及對稱軸確定零點以及零點的和.詳解:分別作與圖像,如圖,則所有零點的和為,選C.點睛:對于方程解的個數(shù)(或函數(shù)零點個數(shù))問題,可利用函數(shù)的值域或最值,結(jié)合函數(shù)的單調(diào)性、草圖確定其中參數(shù)范圍.從圖象的最高點、最低點,分析函數(shù)的最值、極值;從圖象的對稱性,分析函數(shù)的奇偶性;從圖象的走向趨勢,分析函數(shù)的單調(diào)性、周期性等9、B【解析】不妨設(shè),的圖像如圖所示,則,,其中,故,也就是,則,因,故.故選:B.【點睛】函數(shù)有四個不同零點可以轉(zhuǎn)化為的圖像與動直線有四個不同的交點,注意函數(shù)的圖像有局部對稱性,而且還是倒數(shù)關(guān)系.10、B【解析】由散點圖直接選擇即可.【詳解】解:由散點圖可知,植物高度增長越來越緩慢,故選擇對數(shù)模型,即B符合.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】對m進行討論,變形,構(gòu)造新函數(shù)求導(dǎo),利用單調(diào)性求解最值可得實數(shù)m的取值范圍;【詳解】解:由上,;當時,顯然也不成立;;可得設(shè),其定義域為R;則,令,可得;當上時,;當上時,;當時;取得最大值為可得,;解得:;故答案為.【點睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性和最值中的應(yīng)用,屬于難題.12、【解析】先求得,然后利用列舉法求得正確答案.【詳解】依題意,依題意,記,則所有可能取值為,,,共種,其中肥胖學生中男生不少于女生的為,,,共種,故所求的概率為.故答案為:13、【解析】幾何體為一個圓錐與一個棱柱的組合體,體積為14、【解析】令,則方程轉(zhuǎn)化為,可知可能有個不同解,二次函數(shù)可能有個不同解,由恰好有6個不同的實數(shù)根,可得有2個不同的實數(shù)根,有3個不同的實數(shù)根,則,然后根據(jù),,分3種情況討論即可得答案.【詳解】解:令,則方程轉(zhuǎn)化為,畫出的圖象,如圖可知可能有個不同解,二次函數(shù)可能有個不同解,因為恰好有6個不同的實數(shù)根,所以有2個不同的實數(shù)根,有3個不同的實數(shù)根,則,因為,解得,,解得,所以,,每個方程有且僅有兩個不相等的實數(shù)解,所以由,可得,即,解得;由,可得,即,解得;由,可得,即,而在上恒成立,綜上,實數(shù)λ的取值范圍為.故答案為:.15、【解析】先由直線過兩點,求出直線方程,再利用點在直線上,求出的值.【詳解】由直線過兩點,得,則直線方程為:,得,即,又點在直線上,得,得.故答案為:【點睛】本題考查了已知兩點求直線的方程,直線方程的應(yīng)用,屬于容易題.16、0【解析】先令t=cosx,則t∈-1,1,再將問題轉(zhuǎn)化為關(guān)于【詳解】解:令t=cosx,則則f(t)=t則函數(shù)f(t)在-1,1上為減函數(shù),則f(t)即函數(shù)y=cos2x-2故答案為:0.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)42h【解析】(1)根據(jù)題意,得到,求解,即可得出結(jié)果;(2)根據(jù)(1)的結(jié)果,得到,由題意得到,求解,即可得出結(jié)果.【詳解】(1)由已知得,當時,;當時,.于是有,解得(或).(2)由(1)知,當時,有,解得.故污染物減少到40%至少需要42h.【點睛】本題主要考查函數(shù)模型的應(yīng)用,熟記指數(shù)函數(shù)的性質(zhì)即可,屬于??碱}型.18、(1)(2)【解析】(1)先根據(jù)同角三角函數(shù)的關(guān)系求解可得,再根據(jù)同角三角函數(shù)的關(guān)系化簡即可(2)先根據(jù),再根據(jù)求解即可【小問1詳解】∵是第四象限角,∴,,又∵,∴,故∴(負值舍去),,∴故【小問2詳解】∵,∴19、(1)2;(2)詳見解析.【解析】(1)易知函數(shù)和在上遞增,從而在上遞增,根據(jù)在上的最大值為求解.(2)根據(jù)為的零點,得到,由零點存在定理知,然后利用指數(shù)和對數(shù)互化,將問題轉(zhuǎn)化為,利用基本不等式證明.【詳解】(1)因為函數(shù)和在上遞增,所以在上遞增,又因為在上的最大值為,所以,解得;(2)因為為的零點,所以,即,又當時,,當時,,所以,因為,等價于,等價于,等價于,而,令,所以,所以成立,所以.【點睛】關(guān)鍵點點睛:本題關(guān)鍵是由指數(shù)和對數(shù)的互化結(jié)合,將問題轉(zhuǎn)化為證成20、(1);(2)至或至.【解析】(1)根據(jù)數(shù)據(jù),可得,由,可求,從而可求函數(shù)的表達式;(2)由題意,水深,即,從而可求t的范圍,即可得解;【詳解】解:(1)根據(jù)數(shù)據(jù),可得,,,,,函數(shù)的表達式為;(2)由題意,水深,即,,,,,1,,或,;所以,該船在至或至能安全進港21、(1)見解析(2)點為的中點【解析】(1)證面面垂直,可先由線面垂直入手即,進而得到面面垂直;(2)通過構(gòu)造平行四邊形,得到線面平行.解析:(1)連接,因為底面是菱形,,所以為正三角形.因為是的中點,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 飛行器制造綜合課程設(shè)計
- 2025年個人股份轉(zhuǎn)讓及后續(xù)服務(wù)合同協(xié)議書4篇
- 二零二五年度民間借貸授權(quán)委托法律事務(wù)專項合同4篇
- 專項施工方案審批
- 年度家用制冷電器具競爭策略分析報告
- 2025年度綜合開發(fā)項目代建合同標準文本4篇
- 2024年心理咨詢師題庫附參考答案(達標題)
- 2025年水電工程自動化控制系統(tǒng)安裝合同4篇
- 二零二五版苗圃技術(shù)員智慧苗圃建設(shè)與運營管理合同4篇
- 環(huán)氧防滑坡道施工方案
- 中外美術(shù)史試題及答案
- 工會換屆公示文件模板
- 江蘇省南京市協(xié)同體七校2024-2025學年高三上學期期中聯(lián)合考試英語試題答案
- 青島版二年級下冊三位數(shù)加減三位數(shù)豎式計算題200道及答案
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- GB/T 16288-2024塑料制品的標志
- 麻風病防治知識課件
- 干部職級晉升積分制管理辦法
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
- 2024年代理記賬工作總結(jié)6篇
- 電氣工程預(yù)算實例:清單與計價樣本
評論
0/150
提交評論