版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省吉林市蛟河市朝鮮族中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在數(shù)列中,,則等于A. B.C. D.2.如圖,在棱長為的正方體中,為線段的中點,為線段的中點,則直線到直線的距離為()A. B.C. D.3.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線,已知△的頂點,,且,則△的歐拉線的方程為()A. B.C. D.4.焦點為的拋物線標(biāo)準(zhǔn)方程是()A. B.C. D.5.拋物線的焦點到準(zhǔn)線的距離是A.2 B.4C. D.6.已知,則下列不等式一定成立的是()A B.C. D.7.雙曲線:的左、右焦點分別為、,過的直線與y軸交于點A、與雙曲線右支交于點B,若為等邊三角形,則雙曲線C的離心率為()A. B.C.2 D.8.已知,為雙曲線的兩個焦點,點P在雙曲線上且滿足,那么點P到x軸的距離為()A. B.C. D.9.已知數(shù)列中,,則()A. B.C. D.10.已知數(shù)列為等差數(shù)列,則下列數(shù)列一定為等比數(shù)列的是()A. B.C. D.11.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.12.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-9二、填空題:本題共4小題,每小題5分,共20分。13.已知直線:和:,且,則實數(shù)__________,兩直線與之間的距離為__________14.已知數(shù)列的前項和為,,則___________,___________.15.已知曲線,則曲線在點處的切線方程為______16.函數(shù)在處的切線與平行,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點,使直線與平面所成角的正弦值等于?18.(12分)如圖,正三棱柱中,D是的中點,.(1)求點C到平面的距離;(2)試判斷與平面的位置關(guān)系,并證明你的結(jié)論.19.(12分)已知命題:,在下面①②中任選一個作為:,使為真命題,求出實數(shù)a的取值范圍.①關(guān)于x的方程有兩個不等正根;②.(若選①、選②都給出解答,只按第一個解答計分.)20.(12分)求下列函數(shù)的導(dǎo)數(shù)(1);(2)21.(12分)已知直線,拋物線.(1)與有公共點,求的取值范圍;(2)是坐標(biāo)原點,過的焦點且與交于兩點,求的面積.22.(10分)如圖,已知正方體的棱長為2,,,分別為,,的中點(1)求直線與直線所成角余弦值;(2)求點到平面的距離
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點睛:對于含有的數(shù)列,我們看作擺動數(shù)列,往往逐一列舉出來觀察前面有限項的規(guī)律2、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因為,分別為,的中點,因為,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因為,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C3、D【解析】由題設(shè)條件求出垂直平分線的方程,且△的外心、重心、垂心都在垂直平分線上,結(jié)合歐拉線的定義,即垂直平分線即為歐拉線.【詳解】由題設(shè),可得,且中點為,∴垂直平分線的斜率,故垂直平分線方程為,∵,則△的外心、重心、垂心都在垂直平分線上,∴△的歐拉線的方程為.故選:D4、D【解析】設(shè)拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設(shè)拋物線的方程為,因為拋物線的焦點為,可得,解得,所以拋物線的方程為.故選:D.5、D【解析】因為拋物線方程可化為,所以拋物線的焦點到準(zhǔn)線的距離是,故選D.考點:1、拋物線的標(biāo)準(zhǔn)方程;2、拋物線的幾何性質(zhì).6、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.【詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B7、B【解析】由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,從而即可求解.【詳解】解:由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以雙曲線C的離心率,故選:B.8、D【解析】設(shè),由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進(jìn)而求得,最后利用等面積法,即可求解【詳解】設(shè),,為雙曲線的兩個焦點,設(shè)焦距為,,點P在雙曲線上,,,,,,的面積為,利用等面積法,設(shè)的高為,則為點P到x軸的距離,則,故選:D【點睛】本題考查雙曲線的性質(zhì),難度不大.9、D【解析】由數(shù)列的遞推公式依次去求,直到求出即可.【詳解】由,可得,,,故選:D.10、A【解析】根據(jù)等比數(shù)列的定義判斷【詳解】設(shè)的公差是,即,顯然,且是常數(shù),是等比數(shù)列,若中一個為1,則,則不是等比數(shù)列,只要,,都不可能是等比數(shù)列,如,,故選:A11、D【解析】經(jīng)判斷點在圓內(nèi),與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內(nèi),連接,當(dāng)時,弦長最短,,所以弦長,當(dāng)過圓心時,最長等于直徑8,所以的取值范圍是故選:D12、A【解析】根據(jù)平行直線的性質(zhì),結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】因為直線:與:平行,所以有,因為兩條平行直線:與:間距離為3,所以,或,當(dāng)時,;當(dāng)時,,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.-4;②.2【解析】根據(jù)兩直線平行斜率相等求解參數(shù)即可;運用兩平行線間的距離公式計算兩直線之間的距離可得出答案.【詳解】解:直線和,,,解得;∴兩直線與間的距離是:.故答案為:;2.14、①.②.【解析】第一空:由,代入已知條件,即可解得結(jié)果;第二空:由與關(guān)系可推導(dǎo)出之間的關(guān)系,再由遞推公式即可求出通項公式.【詳解】,可得由,可知時,故時即可化為又故數(shù)列是首項為公比為2的等比數(shù)列,故數(shù)列的通項公式故答案為:①;②15、【解析】利用導(dǎo)數(shù)求出切線的斜率即得解.【詳解】解:由題得,所以切線的斜率為,所以切線的方程為即.故答案為:16、2【解析】由得出的值.【詳解】因為函數(shù)在處的切線與平行所以,故故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳解解析;(2)存在.【解析】(1)利用勾股定理證得,結(jié)合線面垂直的判定定理即可證得結(jié)論;(2)以A為原點建立空間直角坐標(biāo)系,設(shè)點,,求得平面的法向量,利用已知條件建立關(guān)于的方程,進(jìn)而得解.【小問1詳解】取中點為,連接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小問2詳解】以A為坐標(biāo)原點,以為x軸,為y軸,為z軸建立空間直角坐標(biāo)系,則,,,,設(shè)點,因為點F在線段上,設(shè),,,設(shè)平面的法向量為,,,則,令,則,設(shè)直線CF與平面所成角為,,解得或(舍去),,此時點F是的三等分點,所以在線段上是存在一點,使直線與平面所成角的正弦值等于.18、(1)(2)平行,證明過程見解析.【解析】(1)利用等體積法即可求解;(2)利用線面平行判定即可求解.【小問1詳解】解:正三棱柱中,D是的中點,所以,,正三棱柱中,所以又因為正三棱柱中,側(cè)面平面且交線為且平面中,所以平面又平面所以設(shè)點C到平面的距離為在三棱錐中,即所以點C到平面的距離為.【小問2詳解】與平面的位置,證明如下:連接交于點,連接,如下圖所示,因為正三棱柱的側(cè)面為矩形所以為的中點又因為為中點所以為的中位線所以又因為平面,且平面所以平面19、答案見解析【解析】根據(jù)題意,分析、為真時的取值范圍,又由復(fù)合命題真假的判斷方法可得、都是真命題,據(jù)此分析可得答案.【詳解】解:選①時由知在上恒成立,∴,即又由q:關(guān)于x的方程有兩個不等正根,知解得,由為真命題知,解得.實數(shù)a的取值范圍.選②時由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當(dāng)且僅當(dāng)時取“=”號,∴,由為真命題知,解得.實數(shù)a的取值范圍.20、(1)見解析(2)見解析【解析】(1)導(dǎo)數(shù)四則運算中的乘除法則.(2)求導(dǎo)數(shù),主要考查復(fù)合函數(shù),外導(dǎo)乘內(nèi)導(dǎo).【小問1詳解】【小問2詳解】.21、(1);(2).【解析】(1)聯(lián)立直線l與拋物線C的方程消去x,借助判別式建立不等式求解作答.(2)利用(1)中信息求出點縱坐標(biāo)差的絕對值即可計算作答.【小問1詳解】依題意,由消去x并整理得:,因與有公共點,則,解得:,所以的取值范圍是.【小問2詳解】拋物線的焦點,則,設(shè),由(1)知,,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 污水課程設(shè)計紫外消毒
- 數(shù)字電路ic課程設(shè)計
- 教育培訓(xùn)行業(yè)教學(xué)方法培訓(xùn)體驗
- 電子課程設(shè)計網(wǎng)課答案
- 稅務(wù)工作總結(jié)制度建設(shè)與規(guī)范化監(jiān)督
- 急救護(hù)理工作總結(jié)
- 貸款經(jīng)理工作總結(jié)
- 電信通訊科技行業(yè)技術(shù)分析
- 旅游行業(yè)促銷活動總結(jié)
- 酒店用品銷售工作總結(jié)
- 高低壓供配電設(shè)備檢查和檢修保養(yǎng)合同3篇
- 投資可行性分析財務(wù)數(shù)據(jù)全套表格
- 2023-2024學(xué)年福建省廈門市八年級(上)期末物理試卷
- 易查云全球智能貿(mào)易信息查詢平臺商業(yè)計劃書
- 招標(biāo)文件的保密措施
- 2024小米在線測評題
- GA/T 804-2024機(jī)動車號牌專用固封裝置
- 公務(wù)車輛定點洗車協(xié)議書2024年
- 學(xué)校空調(diào)維修合同模板
- 2015年下半年教師資格考試-小學(xué)《教育教學(xué)知識與能力》真題及答案解析
- 陰道內(nèi)放置卡前列甲酯栓在無痛人工流產(chǎn)中運用
評論
0/150
提交評論