![專題07 相似三角形中的重要模型-手拉手模型(原卷版)_第1頁(yè)](http://file4.renrendoc.com/view12/M02/3F/39/wKhkGWcUvsmASIqZAAIXn4eAsXs971.jpg)
![專題07 相似三角形中的重要模型-手拉手模型(原卷版)_第2頁(yè)](http://file4.renrendoc.com/view12/M02/3F/39/wKhkGWcUvsmASIqZAAIXn4eAsXs9712.jpg)
![專題07 相似三角形中的重要模型-手拉手模型(原卷版)_第3頁(yè)](http://file4.renrendoc.com/view12/M02/3F/39/wKhkGWcUvsmASIqZAAIXn4eAsXs9713.jpg)
![專題07 相似三角形中的重要模型-手拉手模型(原卷版)_第4頁(yè)](http://file4.renrendoc.com/view12/M02/3F/39/wKhkGWcUvsmASIqZAAIXn4eAsXs9714.jpg)
![專題07 相似三角形中的重要模型-手拉手模型(原卷版)_第5頁(yè)](http://file4.renrendoc.com/view12/M02/3F/39/wKhkGWcUvsmASIqZAAIXn4eAsXs9715.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題07相似三角形中的重要模型-手拉手模型相似三角形是初中幾何中的重要的內(nèi)容,常常與其它知識(shí)點(diǎn)結(jié)合以綜合題的形式呈現(xiàn),其變化很多,是中考的??碱}型。手拉手模型相似是手拉手模型當(dāng)中相對(duì)于手拉手全等模型較難的一種模型,在實(shí)際的應(yīng)用和解題當(dāng)中出現(xiàn)時(shí),對(duì)于同學(xué)們來(lái)說(shuō),都比較困難。而深入理解模型內(nèi)涵,靈活運(yùn)用相關(guān)結(jié)論可以顯著提高解題效率,本專題重點(diǎn)講解相似三角形的“手拉手”模型(旋轉(zhuǎn)模型)。手拉手相似證明題一般思路方法:①由線段乘積相等轉(zhuǎn)化成線段比例式相等;②分子和分子組成一個(gè)三角形、分母和分母組成一個(gè)三角形;③第②步成立,直接從證這兩個(gè)三角形相似,逆向證明到線段乘積相等;④第②步不成立,則選擇替換掉線段比例式中的個(gè)別線段,之后再重復(fù)第③步。模型1.“手拉手”模型(旋轉(zhuǎn)模型)【模型解讀與圖示】“手拉手”旋轉(zhuǎn)型定義:如果將一個(gè)三角形繞著它的項(xiàng)點(diǎn)旋轉(zhuǎn)并放大或縮小(這個(gè)頂點(diǎn)不變),我們稱這樣的圖形變換為旋轉(zhuǎn)相似變換,這個(gè)頂點(diǎn)稱為旋轉(zhuǎn)相似中心,所得的三角形稱為原三角形的旋轉(zhuǎn)相似三角形。1)手拉手相似模型(任意三角形)條件:如圖,∠BAC=∠DAE=,;結(jié)論:△ADE∽△ABC,△ABD∽△ACE;.2)手拉手相似模型(直角三角形)條件:如圖,,(即△COD∽△AOB);結(jié)論:△AOC∽△BOD;,AC⊥BD,.3)手拉手相似模型(等邊三角形與等腰直角三角形)條件:M為等邊三角形ABC和DEF的中點(diǎn);結(jié)論:△BME∽△CMF;.條件:△ABC和ADE是等腰直角三角形;結(jié)論:△ABD∽△ACE.例1.(2022·山西·壽陽(yáng)縣九年級(jí)期末)問(wèn)題情境:如圖1所示,在△ABC中,D、E分別是AB、AC上的點(diǎn),DEBC,在圖1中將ADE繞A點(diǎn)順時(shí)針旋轉(zhuǎn)一定角度,得到圖2,然后將BD、CE分別延長(zhǎng)至M、N,使DM=BD,EN=CE,得到圖3,請(qǐng)解答下列問(wèn)題:(1)猜想證明:若AB=AC,請(qǐng)?zhí)骄肯铝袛?shù)量關(guān)系:①在圖2中,BD與CE的數(shù)量關(guān)系是_________.②在圖3中,猜想∠MAN與∠BAC的數(shù)量關(guān)系,并證明你的猜想;(2)拓展應(yīng)用:其他條件不變,若AB=AC,按上述操作方法,得到圖4,請(qǐng)你繼續(xù)探究:∠MAN與∠BAC的數(shù)量關(guān)系?AM與AN的數(shù)量關(guān)系?直接寫出你的猜想.例2.(2022?新鄉(xiāng)中考模擬)在△ABC中,CA=CB=m,在△AED中,DA=DE=m,請(qǐng)?zhí)剿鹘獯鹣铝袉?wèn)題.【問(wèn)題發(fā)現(xiàn)】(1)如圖1,若∠ACB=∠ADE=90°,點(diǎn)D,E分別在CA,AB上,則CD與BE的數(shù)量關(guān)系是,直線CD與BE的夾角為;【類比探究】(2)如圖2,若∠ACB=∠ADE=120°,將△AED繞點(diǎn)A旋轉(zhuǎn)至如圖2所示的位置,則CD與BE之間是否滿足(1)中的數(shù)量關(guān)系?說(shuō)明理由.【拓展延伸】(3)在(1)的條件下,若m=2,將△AED繞點(diǎn)A旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,D三點(diǎn)共線.請(qǐng)直接寫出CD的長(zhǎng).例3.(2022·山東·九年級(jí)課時(shí)練習(xí))【問(wèn)題發(fā)現(xiàn)】如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D為斜邊BC上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BD與CE的數(shù)量關(guān)系是______,位置關(guān)系是______;【探究證明】如圖2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)C,D,E在同一條直線上時(shí),BD與CE具有怎樣的位置關(guān)系,說(shuō)明理由;【拓展延伸】如圖3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,過(guò)點(diǎn)C作CA⊥BD于A.將△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)旋轉(zhuǎn)角∠CAE為(0°<<360°),當(dāng)C,D,E在同一條直線上時(shí),畫出圖形,并求出線段BE的長(zhǎng)度.例4.(2022·山東·東營(yíng)市一模)【提出問(wèn)題】(1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.【類比探究】(2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由.【拓展延伸】(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.例5.(2022?長(zhǎng)垣市一模)在△ABC中,AB=AC,點(diǎn)D為AB邊上一動(dòng)點(diǎn),∠CDE=∠BAC=α,CD=ED,連接BE,EC.(1)問(wèn)題發(fā)現(xiàn):如圖①,若α=60°,則∠EBA=,AD與EB的數(shù)量關(guān)系是;(2)類比探究:如圖②,當(dāng)α=90°時(shí),請(qǐng)寫出∠EBA的度數(shù)及AD與EB的數(shù)量關(guān)系并說(shuō)明理由;(3)拓展應(yīng)用:如圖③,點(diǎn)E為正方形ABCD的邊AB上的三等分點(diǎn),以DE為邊在DE上方作正方形DEFG,點(diǎn)O為正方形DEFG的中心,若OA=,請(qǐng)直接寫出線段EF的長(zhǎng)度.例6.(2022·成都市·九年級(jí)課時(shí)練習(xí))一次小組合作探究課上,老師將兩個(gè)正方形按如圖所示的位置擺放(點(diǎn)E、A、D在同一條直線上),發(fā)現(xiàn)且.小組討論后,提出了下列三個(gè)問(wèn)題,請(qǐng)你幫助解答:(1)將正方形繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)(如圖1),還能得到嗎?若能,請(qǐng)給出證明,請(qǐng)說(shuō)明理由;(2)把背景中的正方形分別改成菱形和菱形,將菱形繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)(如圖2),試問(wèn)當(dāng)與的大小滿足怎樣的關(guān)系時(shí),;(3)把背景中的正方形分別改寫成矩形和矩形,且,,(如圖3),連接,.試求的值(用a,b表示).課后專項(xiàng)訓(xùn)練1.如圖,在△ABC與△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,連接BD、CE,若AC:BC=3:4,則BD:CE為()A.5:3 B.4:3 C.5:2 D.2:32.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB與DE交于點(diǎn)O,AB=4,AC=3,F(xiàn)是DE的中點(diǎn),連接BD,BF,若點(diǎn)E是射線CB上的動(dòng)點(diǎn),下列結(jié)論:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56A.①② B.③④ C.②③ D.②③④3、如圖,正方形的邊長(zhǎng)為8,線段繞著點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),且,連接,以為邊作正方形,為邊的中點(diǎn),當(dāng)線段的長(zhǎng)最小時(shí),______.4.(2022?虹口區(qū)期中)如圖,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求證:△ABC∽△ADE;(2)判斷△ABD與△ACE是否相似?并證明.5.(2023·浙江·九年級(jí)課時(shí)練習(xí))在△ABC中,AB=AC,∠BAC=α,點(diǎn)P為線段CA延長(zhǎng)線上一動(dòng)點(diǎn),連接PB,將線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α,得到線段PD,連接DB,DC.(1)如圖1,當(dāng)α=60°時(shí),求證:PA=DC;(2)如圖2,當(dāng)α=120°時(shí),猜想PA和DC的數(shù)量關(guān)系并說(shuō)明理由.(3)當(dāng)α=120°時(shí),若AB=6,BP=,請(qǐng)直接寫出點(diǎn)D到CP的距離.6.(2022·重慶·九年級(jí)課時(shí)練習(xí))觀察猜想(1)如圖1,在等邊中,點(diǎn)M是邊上任意一點(diǎn)(不含端點(diǎn)B、C),連接,以為邊作等邊,連接,則與的數(shù)量關(guān)系是______.(2)類比探究:如圖2,在等邊中,點(diǎn)M是延長(zhǎng)線上任意一點(diǎn)(不含端點(diǎn)C),(1)中其它條件不變,(1)中結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.(3)拓展延伸:如圖3,在等腰中,,點(diǎn)M是邊上任意一點(diǎn)(不含端點(diǎn)B、C),連接,以為邊作等腰,使頂角.連按.試探究與的數(shù)量關(guān)系,并說(shuō)明理由.7.(2022·江蘇·九年級(jí)課時(shí)練習(xí))【問(wèn)題發(fā)現(xiàn)】如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D為斜邊BC上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BD與CE的數(shù)量關(guān)系是______,位置關(guān)系是______;【探究證明】如圖2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)C,D,E在同一條直線上時(shí),BD與CE具有怎樣的位置關(guān)系,說(shuō)明理由;【拓展延伸】如圖3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,過(guò)點(diǎn)C作CA⊥BD于A.將△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)旋轉(zhuǎn)角∠CAE為(0°<<360°),當(dāng)C,D,E在同一條直線上時(shí),畫出圖形,并求出線段BE的長(zhǎng)度.8.(2022·山東·九年級(jí)課時(shí)練習(xí))如圖,和是有公共頂點(diǎn)直角三角形,,點(diǎn)P為射線,的交點(diǎn).(1)如圖1,若和是等腰直角三角形,求證:;(2)如圖2,若,問(wèn):(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.(3)在(1)的條件下,,,若把繞點(diǎn)A旋轉(zhuǎn),當(dāng)時(shí),請(qǐng)直接寫出的長(zhǎng)度9.(2023·廣東·深圳市九年級(jí)期中)(1)如圖1,Rt△ABC與Rt△ADE,∠ADE=∠ABC=90°,,連接BD,CE.求證:.(2)如圖2,四邊形ABCD,∠BAD=∠BCD=90°,且,連接BC,BC、AC、CD之間有何數(shù)量關(guān)系?小明在完成本題中,如圖3,使用了“旋轉(zhuǎn)放縮”的技巧,即將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,并放大2倍,點(diǎn)B對(duì)應(yīng)點(diǎn)D.點(diǎn)C落點(diǎn)為點(diǎn)E,連接DE,請(qǐng)你根據(jù)以上思路直接寫出BC,AC,CD之間的關(guān)系.(3)拓展:如圖4,矩形ABCD,E為線段AD上一點(diǎn),以CE為邊,在其右側(cè)作矩形CEFG,且,AB=5,連接BE,BF.求BE+BF的最小值.10.(2023·綿陽(yáng)市·九年級(jí)專題練習(xí))在△ABC中,AB=AC,∠BAC=α,點(diǎn)P是△ABC外一點(diǎn),連接BP,將線段BP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)α得到線段PD,連接BD,CD,AP.觀察猜想:(1)如圖1,當(dāng)α=60°時(shí),的值為,直線CD與AP所成的較小角的度數(shù)為°;類比探究:(2)如圖2,當(dāng)α=90°時(shí),求出的值及直線CD與AP所成的較小角的度數(shù);拓展應(yīng)用:(3)如圖3,當(dāng)α=90°時(shí),點(diǎn)E,F(xiàn)分別為AB,AC的中點(diǎn),點(diǎn)P在線段FE的延長(zhǎng)線上,點(diǎn)A,D,P三點(diǎn)在一條直線上,BD交PF于點(diǎn)G,CD交AB于點(diǎn)H.若CD=2+,求BD的長(zhǎng).11.(2023·湖北·九年級(jí)專題練習(xí))在和中,,,且,點(diǎn)E在的內(nèi)部,連接EC,EB,EA和BD,并且.【觀察猜想】(1)如圖①,當(dāng)時(shí),線段BD與CE的數(shù)量關(guān)系為_(kāi)_________,線段EA,EB,EC的數(shù)量關(guān)系為_(kāi)_________.【探究證明】(2)如圖②,當(dāng)時(shí),(1)中的結(jié)論是否依然成立?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由;【拓展應(yīng)用】(3)在(2)的條件下,當(dāng)點(diǎn)E在線段CD上時(shí),若,請(qǐng)直接寫出的面積.12.(2023··廣西一模)如圖,和均為等腰直角三角形,.現(xiàn)將繞點(diǎn)C旋轉(zhuǎn).(1)如圖1,若三點(diǎn)共線,,求點(diǎn)B到直線的距離;(2)如圖2,連接,點(diǎn)F為線段的中點(diǎn),連接,求證:;(3)如圖3,若點(diǎn)G在線段上,且,在內(nèi)部有一點(diǎn)O,請(qǐng)直接寫出的最小值.13.(2022?南山區(qū)校級(jí)一模)(1)【問(wèn)題發(fā)現(xiàn)】如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.填空:①線段CF與DG的數(shù)量關(guān)系為;②直線CF與DG所夾銳角的度數(shù)為.(2)【拓展探究】如圖②,將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②進(jìn)行說(shuō)明.(3)【解決問(wèn)題】如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=10,O為AC的中點(diǎn).若點(diǎn)D在直線BC上運(yùn)動(dòng),連接OE,則在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,線段OE長(zhǎng)的最小值為(直接寫出結(jié)果).14、某校數(shù)學(xué)活動(dòng)小組在一次活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:(1)問(wèn)題發(fā)現(xiàn):如圖1,在等邊中,點(diǎn)是邊上任意一點(diǎn),連接,以為邊作等邊,連接CQ,BP與CQ的數(shù)量關(guān)系是________;(2)變式探究:如圖2,在等腰中,,點(diǎn)是邊上任意一點(diǎn),以為腰作等腰,使,,連接,判斷和的數(shù)量關(guān)系,并說(shuō)明理由;(3)解決問(wèn)題:如圖3,在正方形中,點(diǎn)是邊上一點(diǎn),以為邊作正方形,是正方形的中心,連接.若正方形的邊長(zhǎng)為5,,求正方形的邊長(zhǎng).15、如圖,四邊形ABCD和四邊形AEFG都是正方形,C,F(xiàn),G三點(diǎn)在一直線上,連接AF并延長(zhǎng)交邊CD于點(diǎn)M.(1)求證:△MFC∽△MCA;(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 29292-2024鞋類鞋類和鞋類部件中重點(diǎn)化學(xué)物質(zhì)管控指南
- Pemigatinib-d6-INCB054828-d-sub-6-sub-生命科學(xué)試劑-MCE-9553
- L-Pyroglutamic-acid-7-amido-4-methylcoumarin-生命科學(xué)試劑-MCE-3725
- Boc-Ala-Me-H117-生命科學(xué)試劑-MCE-9672
- 4-Fluoro-α-pyrrolidinopropiophenone-hydrochloride-生命科學(xué)試劑-MCE-5894
- 二零二五年度租賃期滿續(xù)租養(yǎng)老機(jī)構(gòu)居住協(xié)議合同
- 2025年度商鋪?zhàn)赓U協(xié)議終止及租賃場(chǎng)地使用權(quán)回購(gòu)協(xié)議
- 二零二五年度茶餐廳股份合作經(jīng)營(yíng)協(xié)議
- 2025年度智慧能源管理系統(tǒng)股東合作協(xié)議書
- 二零二五年度校園食堂檔口租賃合同與食品安全管理協(xié)議
- 時(shí)政述評(píng)培訓(xùn)課件
- 2022屆高三體育特長(zhǎng)生家長(zhǎng)會(huì)
- 不對(duì)外供貨協(xié)議
- 2024屆高考作文主題訓(xùn)練:時(shí)評(píng)類(含解析)
- 260噸汽車吊地基承載力驗(yàn)算
- 公司新員工三級(jí)安全教育培訓(xùn)(車間級(jí))
- 北師大版高三數(shù)學(xué)選修4-6初等數(shù)論初步全冊(cè)課件【完整版】
- 老子道德經(jīng)全文講解學(xué)習(xí)課件
- 企業(yè)更名通知函
- 經(jīng)大量臨床實(shí)驗(yàn)證明,空氣負(fù)離子能有效治療心腦血管疾病
- GB/T 12618-1990開(kāi)口型扁圓頭抽芯鉚釘
評(píng)論
0/150
提交評(píng)論