重慶市部分區(qū)縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
重慶市部分區(qū)縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
重慶市部分區(qū)縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
重慶市部分區(qū)縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
重慶市部分區(qū)縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶市部分區(qū)縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的流程圖,則輸出k的值為()A.3 B.4C.5 D.22.設(shè)、是兩條不同的直線,、、是三個(gè)不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則3.執(zhí)行如圖所示的程序框圖,如果輸入,那么輸出的a值為()A.3 B.27C.-9 D.94.雙曲線的漸近線方程為()A. B.C. D.5.橢圓的焦點(diǎn)坐標(biāo)為()A.和 B.和C.和 D.和6.若雙曲線離心率為,過(guò)點(diǎn),則該雙曲線的方程為()A. B.C. D.7.雙曲線的光學(xué)性質(zhì)如下:如圖1,從雙曲線右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長(zhǎng)線經(jīng)過(guò)左焦點(diǎn).我國(guó)首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個(gè)光學(xué)性質(zhì).某“雙曲線燈”的軸截面是雙曲線一部分,如圖2,其方程為,分別為其左、右焦點(diǎn),若從右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線上的點(diǎn)A和點(diǎn)B反射后(,A,B在同一直線上),滿足,則該雙曲線的離心率的平方為()A. B.C. D.8.等差數(shù)列中,為其前項(xiàng)和,,則的值為()A.13 B.16C.104 D.2089.已知是空間的一個(gè)基底,若,,若,則()A. B.C.3 D.10.已知等比數(shù)列的前項(xiàng)和為,首項(xiàng)為,公比為,則()A. B.C. D.11.南宋數(shù)學(xué)家楊輝在《詳解九章算術(shù)法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項(xiàng)之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項(xiàng)分別為2,3,5,8,12,17,23,則該數(shù)列的第31項(xiàng)為()A.336 B.467C.483 D.60112.函數(shù)在上的最小值為()A. B.C.-1 D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),是雙曲線的兩個(gè)焦點(diǎn),P是雙曲線上任意一點(diǎn),過(guò)作平分線的垂線,垂足為M,則點(diǎn)M到直線的距離的最小值是___14.已知某農(nóng)場(chǎng)某植物高度,且,如果這個(gè)農(nóng)場(chǎng)有這種植物10000棵,試估計(jì)該農(nóng)場(chǎng)這種植物高度在區(qū)間上的棵數(shù)為_(kāi)_____.參考數(shù)據(jù):若,則,,.15.某n重伯努利試驗(yàn)中,事件A發(fā)生的概率為p,事件A發(fā)生的次數(shù)記為X,,,則______16.i為虛數(shù)單位,復(fù)數(shù)______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(1)當(dāng)k=1時(shí),求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),求函數(shù)在上的最小值m和最大值M.18.(12分)在①;②,這兩個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,然后解答補(bǔ)充完整的題目.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,設(shè)的面積為S,已知_________.(1)求的值;(2)若,求值.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.19.(12分)一個(gè)長(zhǎng)方體的平面展開(kāi)圖及該長(zhǎng)方體的直觀圖的示意圖如圖所示(1)請(qǐng)將字母F,G,H標(biāo)記在長(zhǎng)方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由):(2)若且有下面兩個(gè)條件:①;②,請(qǐng)選擇其中一個(gè)條件,使得DF⊥平面,并證明你的結(jié)論20.(12分)已知空間中三點(diǎn),,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)的值21.(12分)已知橢圓的離心率為,以坐標(biāo)原點(diǎn)為圓心,以橢圓M的短半軸長(zhǎng)為半徑的圓與直線有且只有一個(gè)公共點(diǎn)(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)過(guò)橢圓M的右焦點(diǎn)F的直線交橢圓M于A,B兩點(diǎn),過(guò)F且垂直于直線的直線交橢圓M于C,D兩點(diǎn),則是否存在實(shí)數(shù)使成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由22.(10分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(3)若對(duì),都有成立,且存在,使成立,求實(shí)數(shù)a的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)程序框圖運(yùn)行程序,直到滿足,輸出結(jié)果即可.【詳解】按照程序框圖運(yùn)行程序,輸入,則,,不滿足,循環(huán);,,不滿足,循環(huán);,,不滿足,循環(huán);,,滿足,輸出結(jié)果:故選:B.2、B【解析】根據(jù)線線、線面、面面的位置關(guān)系,對(duì)選項(xiàng)進(jìn)行逐一判斷即可.【詳解】選項(xiàng)A.一條直線垂直于一平面內(nèi)的,兩條相交直線,則改直線與平面垂直則由,不能得出,故選項(xiàng)A不正確.選項(xiàng)B.,則正確,故選項(xiàng)B正確.選項(xiàng)C若,則與可能相交,可能異面,也可能平行,故選項(xiàng)C不正確.選項(xiàng)D.若,則與可能相交,可能平行,故選項(xiàng)D不正確.故選:B3、B【解析】分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)累乘值,并判斷滿足時(shí)輸出的值【詳解】解:模擬執(zhí)行程序框圖,可得,時(shí),不滿足條件,;不滿足條件,;不滿足條件,;滿足條件,退出循環(huán),輸出的值為27故選:4、A【解析】直接求出,,進(jìn)而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A5、D【解析】本題是焦點(diǎn)在x軸的橢圓,求出c,即可求得焦點(diǎn)坐標(biāo).【詳解】,可得焦點(diǎn)坐標(biāo)為和.故選:D6、B【解析】分析可得,再將點(diǎn)代入雙曲線的方程,求出的值,即可得出雙曲線的標(biāo)準(zhǔn)方程.【詳解】,則,,則雙曲線的方程為,將點(diǎn)的坐標(biāo)代入雙曲線的方程可得,解得,故,因此,雙曲線的方程為.故選:B7、D【解析】設(shè),根據(jù)題意可得,由雙曲線定義得、,進(jìn)而求出(用表示),然后在中,應(yīng)用勾股定理得出關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),則.因?yàn)?,所以,則,則,又因?yàn)椋?,則,在中,,即,所以.故選:D8、D【解析】利用等差數(shù)列下標(biāo)的性質(zhì),結(jié)合等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可.【詳解】由,所以,故選:D9、C【解析】由,可得存在實(shí)數(shù),使,然后將代入化簡(jiǎn)可求得結(jié)果【詳解】,,因,所以存在實(shí)數(shù),使,所以,所以,所以,得,,所以,故選:C10、D【解析】根據(jù)求解即可.【詳解】因?yàn)榈缺葦?shù)列,,所以.故選:D11、B【解析】先由遞推關(guān)系利用累加法求出通項(xiàng)公式,直接帶入即可求得.【詳解】根據(jù)題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項(xiàng)為.故選:B12、D【解析】求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)的符號(hào)求出函數(shù)的單調(diào)區(qū)間,再根據(jù)函數(shù)的單調(diào)性即可得出答案.【詳解】解:因?yàn)?,所以,?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,故.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】構(gòu)造全等三角形,結(jié)合雙曲線定義,求得點(diǎn)的軌跡方程,再根據(jù)直線與圓的位置關(guān)系,即可求得點(diǎn)到直線距離的最小值.【詳解】延長(zhǎng)交的延長(zhǎng)線于點(diǎn),如下所示:因?yàn)槠椒?,且,故△△,則,又,則,又在△中,分別為的中點(diǎn),故可得;設(shè)點(diǎn)的坐標(biāo)為,則,即點(diǎn)在圓心為,半徑的圓上,圓心到直線的距離,故點(diǎn)到直線距離的最小值為.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義,以及直線與圓的位置關(guān)系,解決問(wèn)題的關(guān)鍵在于通過(guò)幾何關(guān)系求得點(diǎn)的軌跡方程,屬中檔題.14、1359【解析】由已知求得,則,結(jié)合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計(jì)該農(nóng)場(chǎng)這種植物高度在區(qū)間,上的棵數(shù)為故答案為:135915、##0.2【解析】根據(jù)二項(xiàng)分布的均值和方差的計(jì)算公式可求解【詳解】依題意得X服從二項(xiàng)分布,則,解得,故答案為:16、【解析】利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡(jiǎn)求解即可.【詳解】故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)增區(qū)間為(2),【解析】(1)求導(dǎo),由判別式可判斷導(dǎo)數(shù)符號(hào),然后可得;(2)求導(dǎo),求導(dǎo)數(shù)零點(diǎn),比較函數(shù)極值和端點(diǎn)函數(shù)值,結(jié)合單調(diào)性可得.【小問(wèn)1詳解】因?yàn)?,所以,,因?yàn)?,所以恒成立所以的增區(qū)間為.【小問(wèn)2詳解】當(dāng)時(shí),,令,解得,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),所以,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.因?yàn)?,所以在區(qū)間上的最大值,最小值為18、條件選擇見(jiàn)解析;(1);(2).【解析】(1)若選擇①,先利用正弦定理進(jìn)行邊角互化,再結(jié)合正余弦的和差角公式化簡(jiǎn)可得,得出;若選擇②,利用余弦定理及面積公式可得,得;(2)由(1)可知,由及得,,再根據(jù)余弦定理求解的值.【詳解】解析:(1)選擇條件①.,,得,選擇條件②,由余弦定理及三角形的面積公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【點(diǎn)睛】本題考查解三角形,難度一般.解答的關(guān)鍵在于根據(jù)題目中邊角關(guān)系,運(yùn)用正弦定理進(jìn)行邊角互化、再根據(jù)兩角和與差的正弦公式進(jìn)行化簡(jiǎn)是關(guān)鍵.一般地,當(dāng)?shù)仁街泻衋,b,c的關(guān)系式,且全為二次時(shí),可利用余弦定理進(jìn)行化簡(jiǎn);當(dāng)含有內(nèi)角的正弦值及邊的關(guān)系,且為一次式時(shí),可考慮采用正弦定理進(jìn)行邊角互化.19、(1)答案見(jiàn)解析(2)答案見(jiàn)解析【解析】(1)由展開(kāi)圖及直觀圖直接觀察可得;(2)選擇②,根據(jù)線面垂直的判定定理即可證明DF⊥平面.【小問(wèn)1詳解】如圖,【小問(wèn)2詳解】若選擇①,若此時(shí)有平面,則由平面可得,而平面,而平面,故,因?yàn)?,則平面,由平面可得,故此時(shí)矩形為正方形,,矛盾.選擇條件②,使得平面,下面證明如圖,連接,在長(zhǎng)方體中,平面,而平面,故,而,故矩形為正方形,故,而,故平面,而平面,故,同理,又,所以平面.20、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.21、(1)(2)存在,【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)直線,聯(lián)立直線方程和橢圓方程,消元后利用韋達(dá)定理可用表示,從而可求的值.【小問(wèn)1詳解】據(jù)題意,得,∴,∴所求橢圓M的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】據(jù)(1)求解知,點(diǎn)F坐標(biāo)為若直線的斜率存在,且不等于0,設(shè)直線據(jù)得設(shè),則,∴同理可求知,∴,∴,即此時(shí)存滿足題設(shè);若直線的斜率不存在,則;若直線的斜率為0,則,此時(shí)若,則綜上,存在實(shí)數(shù),且使22、(1),(2)在單減,也單減,無(wú)增區(qū)間(3)【解析】(1)根據(jù)分母不等于0,對(duì)數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號(hào)即可得出答案;(3)若對(duì),都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在函數(shù)的值域中,從而可得出的范圍,即可得解.【小問(wèn)1詳解】解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論