版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
內(nèi)蒙古呼和浩特市土默特左旗第一中學2025屆高一上數(shù)學期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的圖象的一個對稱中心是()A B.C. D.2.下列命題中不正確的是()A.一組數(shù)據(jù)1,2,3,3,4,5的眾數(shù)大于中位數(shù)B.數(shù)據(jù)6,5,4,3,3,3,2,2,2,1的分位數(shù)為5C.若甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5,6,9,10,5,則這兩組數(shù)據(jù)中較穩(wěn)定的是乙D.為調(diào)查學生每天平均閱讀時間,某中學從在校學生中,利用分層抽樣的方法抽取初中生20人,高中生10人.經(jīng)調(diào)查,這20名初中生每天平均閱讀時間為60分鐘,這10名高中生每天平均閱讀時間為90分鐘,那么被抽中的30名學生每天平均閱讀時間為70分鐘3.方程組的解集是()A. B.C. D.4.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.5.已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,函數(shù)是奇函數(shù),且當時,,則()A. B.6C. D.76.已知圓與直線及都相切,圓心在直線上,則圓的方程為()A. B.C. D.7.如圖,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,動點P從點A出發(fā),由A→D→C→B沿邊運動,點P在AB上的射影為Q.設(shè)點P運動的路程為x,△APQ的面積為y,則y=f(x)的圖象大致是()A. B.C. D.8.已知,則()A. B.7C. D.19.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如.在不超過20的素數(shù)中,隨機選取2個不同的數(shù),其和等于20的概率是()【注:如果一個大于1的整數(shù)除了1和自身外無其它正因數(shù),則稱這個整數(shù)為素數(shù).】A. B.C. D.10.設(shè)全集,集合,,則A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}二、填空題:本大題共6小題,每小題5分,共30分。11.已知點為圓上的動點,則的最小值為__________12.函數(shù)的定義域是___________.13.已知正四棱錐的底面邊長為4cm,高與斜高的夾角為,則該正四棱錐的側(cè)面積等于________cm214.已知函數(shù),若,使得,則實數(shù)a的取值范圍是___________.15.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分圖象如圖所示,則的值是________16.某校高中三個年級共有學生2000人,其中高一年級有學生750人,高二年級有學生650人.為了了解學生參加整本書閱讀活動的情況,現(xiàn)采用分層抽樣的方法從中抽取容量為200的樣本進行調(diào)查,那么在高三年級的學生中應(yīng)抽取的人數(shù)為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的定義域是
A
,不等式的解集是集合
B
,求集合
A
和
.18.設(shè)集合,.(1)若,求;(2)若,求實數(shù)的取值集合.19.已知函數(shù)f(x)=x-(1)討論并證明函數(shù)f(x)在區(qū)間(0,+∞)的單調(diào)性;(2)若對任意的x∈[1,+∞),f(mx)+mf(x)<0恒成立,求實數(shù)m的取值范圍20.已知函數(shù).(1)若為偶函數(shù),求實數(shù)m的值;(2)當時,若不等式對任意恒成立,求實數(shù)a的取值范圍;(3)當時,關(guān)于x的方程在區(qū)間上恰有兩個不同的實數(shù)解,求實數(shù)m的取值范圍.21.已知函數(shù)其中,求:函數(shù)的最小正周期和單調(diào)遞減區(qū)間;函數(shù)圖象的對稱軸
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用正弦函數(shù)的對稱性質(zhì)可知,,從而可得函數(shù)的圖象的對稱中心為,再賦值即可得答案【詳解】令,,解得:,.所以函數(shù)的圖象的對稱中心為,.當時,就是函數(shù)的圖象的一個對稱中心,故選:B.2、A【解析】由中位數(shù)以及眾數(shù)判斷A;由百分位數(shù)的定義計算判斷B;計算乙組數(shù)據(jù)的方差判斷C;計算被抽中的30名學生每天平均閱讀時間從而判斷D.【詳解】對于A,中位數(shù)為和眾數(shù)相等,故A錯誤;對于B,將該組數(shù)據(jù)從小到大排列為,,則該組數(shù)據(jù)的分位數(shù)為5,故B正確;對于C,乙組數(shù)據(jù),方差為,則這兩組數(shù)據(jù)中較穩(wěn)定的是乙,故C正確;對于D,被抽中的30名學生每天平均閱讀時間為,故D正確;故選:A3、A【解析】解出方程組,寫成集合形式.【詳解】由可得:或.所以方程組的解集是.故選:A4、A【解析】先考慮函數(shù)在上是增函數(shù),再利用復合函數(shù)的單調(diào)性得出求解即可.【詳解】設(shè)函數(shù)在上是增函數(shù),解得故選:A【點睛】本題主要考查了由復合函數(shù)的單調(diào)性求參數(shù)范圍,屬于中檔題.5、D【解析】先求出,再求出即得解.【詳解】由已知,函數(shù)與函數(shù)互為反函數(shù),則由題設(shè),當時,,則因為為奇函數(shù),所以.故選:D6、B【解析】圓的圓心在直線上,設(shè)圓心為.圓與直線及都相切,所以,解得.此時半徑為:.所以圓的方程為.故選B.7、D【解析】結(jié)合P點的運動軌跡以及二次函數(shù),三角形的面積公式判斷即可【詳解】解:P點在AD上時,△APQ是等腰直角三角形,此時f(x)=?x?x=x2,(0<x<2)是二次函數(shù),排除A,B,P在DC上時,PQ不變,AQ增加,是遞增的一次函數(shù),排除C,故選D【點睛】本題考查了數(shù)形結(jié)合思想,考查二次函數(shù)以及三角形的面積問題,是一道基礎(chǔ)題8、A【解析】利用表示,代入求值.【詳解】,即,.故選:A9、A【解析】隨機選取兩個不同的數(shù)共有種,而其和等于20有2種,由此能求出隨機選取兩個不同的數(shù),其和等于20的概率【詳解】在不超過20的素數(shù)中有2,3,5,7,11,13,17,19共8個,隨機選取兩個不同的數(shù)共有種,隨機選取兩個不同的數(shù),其和等于20有2種,分別為(3,17)和(7,13),故可得隨機選取兩個不同的數(shù),其和等于20的概率,故選:10、B【解析】根據(jù)集合的補集和交集的概念得到結(jié)果即可.【詳解】全集,集合,,;,故答案為B.【點睛】高考對集合知識的考查要求較低,均是以小題的形式進行考查,一般難度不大,要求考生熟練掌握與集合有關(guān)的基礎(chǔ)知識.縱觀近幾年的高考試題,主要考查以下兩個方面:一是考查具體集合的關(guān)系判斷和集合的運算.解決這類問題的關(guān)鍵在于正確理解集合中元素所具有屬性的含義,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的關(guān)系判斷以及運算二、填空題:本大題共6小題,每小題5分,共30分。11、-4【解析】點為圓上的動點,所以.由,所以當時有最小值-4.故答案為-4.12、【解析】利用根式、分式的性質(zhì)求函數(shù)定義域即可.【詳解】由解析式知:,則,可得,∴函數(shù)定義域為.故答案為:.13、32【解析】在正四棱錐的高和斜高所在的直角三角形中計算出斜高后,根據(jù)三角形的面積公式即可求出側(cè)面積.【詳解】因為正四棱錐的底面邊長為4cm,高與斜高的夾角為,所以斜高為cm,所以該正四棱錐的側(cè)面積等于cm2故答案為:32.【點睛】本題考查了正棱錐的結(jié)構(gòu)特征,考查了求正四棱錐的側(cè)面積,屬于基礎(chǔ)題.14、【解析】將“對,使得,”轉(zhuǎn)化為,再根據(jù)二次函數(shù)的性質(zhì)和指數(shù)函數(shù)的單調(diào)性求得最值代入即可解得結(jié)果.【詳解】當時,,∴當時,,當時,為增函數(shù),所以時,取得最大值,∵對,使得,∴,∴,解得.故答案為:.15、【解析】,把代入,得,,,故答案為考點:1、已知三角函數(shù)的圖象求解析式;2、三角函數(shù)的周期性【方法點睛】本題主要通過已知三角函數(shù)的圖象求解析式考查三角函數(shù)的性質(zhì),屬于中檔題.求解析時求參數(shù)是確定函數(shù)解析式的關(guān)鍵,由特殊點求時,一定要分清特殊點是“五點法”的第幾個點,用五點法求值時,往往以尋找“五點法”中的第一個點為突破口,“第一點”(即圖象上升時與軸的交點)時;“第二點”(即圖象的“峰點”)時;“第三點”(即圖象下降時與軸的交點)時;“第四點”(即圖象的“谷點”)時;“第五點”時16、60【解析】求出高三年級的學生人數(shù),再根據(jù)分層抽樣的方法計算即可.【詳解】高三年級有學生2000-750-650=600人,用分層抽樣的方法從中抽取容量為200的樣本,應(yīng)抽取高三年級學生的人數(shù)為200×600故答案為:60三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、;.【解析】先解出不等式得到集合A,再根據(jù)指數(shù)函數(shù)單調(diào)性解出集合B,然后根據(jù)補集和交集的定義求得答案.【詳解】由題意,,則,又,則,,于是.18、(1);(2).【解析】易得.(1)由;(2),然后利用分類討論思想對、和分三種情況進行討論.試題解析:集合(1)若,則,則(2),∴,當,即時,成立;當,即時,(i)當時,,要使得,,只要解得,所以的值不存在;(ii)當時,,要使得,只要解得綜上,的取值集合是考點:集合的基本運算.19、(1)函數(shù)f(x)在(0,+∞)上單調(diào)遞增,見解析(2)m<-1【解析】1利用單調(diào)性的定義,根據(jù)步驟,取值,作差,變形,定號下結(jié)論,即可得到結(jié)論;2原不等式等價于2mx-1mx-mx<0對任意的x∈[1,+∞)恒成立,整理得2mx2解析:(1)函數(shù)f(x)在(0,+∞)上單調(diào)遞增證明:任取x2>x因為x2>x1>0,所以x所以函數(shù)f(x)在(0,+∞)上單調(diào)遞增(2)原不等式等價于2mx-1mx-整理得2mx2-m-若m>0,則左邊對應(yīng)的函數(shù)開口向上,當x∈[1,+∞)時,必有大于0的函數(shù)值;所以m<0且2m-m-1所以m<-120、(1)-1;(2);(3)【解析】(1)根據(jù)偶函數(shù)解得:m=-1,再用定義法進行證明;(2)記,判斷出在上單增,列不等式組求出實數(shù)a的取值范圍;(3)先判斷出在R上單增且,令,把問題轉(zhuǎn)化為在上有兩根,令,,利用圖像有兩個交點,列不等式求出實數(shù)m的取值范圍.【小問1詳解】定義域為R.因為為偶函數(shù),所以,即,解得:m=-1.此時,所以所以偶函數(shù),所以m=-1.【小問2詳解】當時,不等式可化為:,即對任意恒成立.記,只需.因為在上單增,在上單增,所以在上單增,所以,所以,解得:,即實數(shù)a的取值范圍為.【小問3詳解】當時,在R上單增,在R上單增,所以在R上單增且.則可化為.又因為在R上單增,所以,換底得:,即.令,則,問題轉(zhuǎn)化為在上有兩根,即,令,,分別作出圖像如圖所示:只需,解得:.即實數(shù)m的取值范圍為.【點睛】已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津濱海職業(yè)學院《城市設(shè)計原理》2023-2024學年第一學期期末試卷
- 天府新區(qū)信息職業(yè)學院《手球》2023-2024學年第一學期期末試卷
- 橋梁墩柱施工方案
- 個人叉車裝貨合同范例
- 影視家具采購合同范例
- 明星簽約合同范例
- 物資采購供貨合同范例
- 新建康復護理學習題庫+參考答案
- 消防救援職業(yè)技能鑒定測試題
- 2024學年高中地理《2.3水圈和水循環(huán)》教學實錄 魯教版必修1
- 2024-2025學年高二上學期期末數(shù)學試卷(基礎(chǔ)篇)(含答案)
- 直系親屬股權(quán)無償轉(zhuǎn)讓合同(2篇)
- 2023-2024學年廣東省廣州市白云區(qū)九年級(上)期末語文試卷
- 汽車吊籃使用專項施工方案
- 2024年典型事故案例警示教育手冊15例
- 中秋國慶慰問品采購投標方案
- ISO9000質(zhì)量管理體系培訓資料
- 強制檢定工作計量器具目錄
- 大學基礎(chǔ)寫作--表達方式課件
- 日標法蘭尺寸表
- MSD(濕敏器件防護)控制技術(shù)規(guī)范
評論
0/150
提交評論