版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
西藏日喀則區(qū)南木林高級中學2025屆高二上數(shù)學期末質量跟蹤監(jiān)視試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從直線上動點作圓的兩條切線,切點分別為、,則最大時,四邊形(為坐標原點)面積是()A. B.C. D.2.數(shù)列的一個通項公式為()A. B.C. D.3.若拋物線的焦點與橢圓的下焦點重合,則m的值為()A.4 B.2C. D.4.已知橢圓:的左、右焦點分別為,,下頂點為,直線與橢圓的另一個交點為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.5.已知隨機變量服從正態(tài)分布,且,則()A.0.6 B.0.4C.0.3 D.0.26.橢圓的一個焦點坐標為,則()A.2 B.3C.4 D.87.若復數(shù),則()A B.C. D.8.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件9.設F是雙曲線的左焦點,,P是雙曲線右支上的動點,則的最小值為()A.5 B.C. D.910.設,若直線與直線平行,則的值為()A. B.C.或 D.11.設,,,則,,大小關系是A. B.C. D.12.已知a,b是互不重合直線,,是互不重合的平面,下列命題正確的是()A.若,,則B.若,,,則C.若,,則D.若,,,則二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)列滿足,,則___________.14.已知點和,圓,當圓C與線段沒有公共點時,則實數(shù)m的取值范圍為___________15.已知數(shù)列{an}的前n項和Sn=n2+n,則an=_____16.已知雙曲線的左、右焦點分別為,右頂點為,為雙曲線上一點,且,線段的垂直平分線恰好經(jīng)過點,則雙曲線的離心率為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)求在區(qū)間上的最值.18.(12分)已知函數(shù),且)的圖象經(jīng)過點和
.(1)求實數(shù),的值;(2)若,求數(shù)列前項和
.19.(12分)已知橢圓的焦距為,離心率為(1)求橢圓方程;(2)設過橢圓頂點,斜率為的直線交橢圓于另一點,交軸于點,且,,成等比數(shù)列,求的值20.(12分)為了了解高一年級學生的體能情況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),圖中從左到右各小長方形面積之比為2∶4∶17∶15∶9∶3,第二小組的頻數(shù)為12(1)第二小組的頻率是多少?樣本量是多少?(2)若次數(shù)在110以上(含110次)為達標,則該校全體高一年級學生的達標率是多少?(3)樣本中不達標的學生人數(shù)是多少?(4)第三組的頻數(shù)是多少?21.(12分)已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2的周長為6,離心率等于.(1)求橢圓C的標準方程;(2)過點(4,0)的直線l交橢圓C于M、N兩點,且OM⊥ON,求直線l的方程.22.(10分)拋物線的焦點為F,過點F的直線交拋物線于A,B兩點(1)若,求直線AB的斜率;(2)設點M在線段AB上運動,原點O關于點M的對稱點為C,求四邊形OACB面積的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分析可知當時,最大,計算出、,進而可計算得出四邊形(為坐標原點)面積.【詳解】圓的圓心為坐標原點,連接、、,則,設,則,,則,當取最小值時,,此時,,,,故,此時,.故選:B.2、A【解析】根據(jù)規(guī)律,總結通項公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項為,所以該數(shù)列一個通項公式為故選:A3、D【解析】求出橢圓的下焦點,即拋物線的焦點,即可得解.【詳解】解:橢圓的下焦點為,即為拋物線焦點,∴,∴.故選:D.4、B【解析】由橢圓定義可得各邊長,利用三角形相似,可得點坐標,再根據(jù)點在橢圓上,可得離心率.【詳解】如圖所示:因為為等腰三角形,且,又,所以,所以,過點作軸,垂足為,則,由,,得,因為點在橢圓上,所以,所以,即離心率,故選:B.5、A【解析】根據(jù)正態(tài)曲線的對稱性即可求得答案.【詳解】由題意,正態(tài)曲線的對稱軸為,則與關于對稱軸對稱,于是.故選:A.6、D【解析】由條件可得,,,,由關系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點坐標為,∴,又,∴,∴,故選:D.7、A【解析】根據(jù)復數(shù)的乘法運算即可求解.【詳解】由,故選:A8、B【解析】根據(jù)充分條件、必要條件、充要條件的定義依次判斷.【詳解】當時,,非充分,故A錯.當不能推出,所以非充分,,所以是必要條件,故B正確.當在中,,反之,故為充要條件,故C錯;當時,,,,充分條件,因為,當時成立,非必要條件,故D錯.故選:B.9、B【解析】由雙曲線的的定義可得,于是將問題轉化為求的最小值,由得出答案.【詳解】設雙曲線的由焦點為,且點A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當且僅當三點共線時,取得等號.故選:B10、C【解析】根據(jù)直線的一般式判斷平行的條件進行計算.【詳解】時,容易驗證兩直線不平行,當時,根據(jù)兩直線平行的條件可知:,解得或.故選:C.11、A【解析】構造函數(shù),根據(jù)的單調(diào)性可得(3),從而得到,,的大小關系【詳解】考查函數(shù),則,在上單調(diào)遞增,,(3),即,,故選:【點睛】本題考查了利用函數(shù)的單調(diào)性比較大小,考查了構造法和轉化思想,屬基礎題12、B【解析】根據(jù)線線,線面,面面位置關系的判定方法即可逐項判斷.【詳解】A:若,,則或a,故A錯誤;B:若,,則a⊥β,又,則a⊥b,故B正確;C:若,,則或α與β相交,故C錯誤;D:若,,,則不能判斷α與β是否垂直,故D錯誤.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題中所給的遞推式得到數(shù)列具有周期性,進而得到結果.【詳解】根據(jù)題中遞推式知,可知數(shù)列具有周期性,周期為3,因為故故答案為:14、【解析】當點和都在圓的內(nèi)部時,結合點與圓的位置關系得出實數(shù)m的取值范圍,再由圓心到直線的距離大于半徑得出實數(shù)m的取值范圍.【詳解】當點和都在圓的內(nèi)部時,,解得或直線的方程為,即圓心到直線的距離為,當圓心到直線的距離大于半徑時,,且.綜上,實數(shù)m的取值范圍為.故答案為:15、2n【解析】根據(jù)數(shù)列的通項與前n項和的關系求解即可.【詳解】由題,當時,,當時.當時也滿足.故.故答案為:【點睛】本題主要考查了根據(jù)數(shù)列的通項與前n項和的關系求通項公式的方法,屬于基礎題.16、【解析】在中求出,再在中求出,即可得到的齊次式,化簡即可求出離心率【詳解】設雙曲線:,,不妨設為雙曲線右支上一點因為線段的垂直平分線恰好經(jīng)過點,且,所以,在中,,所以,,在中,,所以,,因此,,化簡得,,即,而,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)最小值為0,最大值為4【解析】(1)利用導數(shù)求得切線方程.(2)結合導數(shù)求得在區(qū)間上的最值.【小問1詳解】,所以曲線在點處的切線方程為.【小問2詳解】,所以在區(qū)間遞增;在區(qū)間遞減,,所以在區(qū)間上的最小值為,最大值為.18、(1),(2)【解析】(1)將A、B點坐標代入,計算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結合等比數(shù)列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,
.【小問2詳解】由(1)得,又,所以,故
.19、(1);(2).【解析】(1)由焦距為,離心率為結合性質,列出關于的方程組,求出從而求出橢圓方程;(2)設出直線方程,代入橢圓方程,求出點D、E的坐標,然后利用|BD|,|BE|,|DE|成等比數(shù)列,即可求解【詳解】(1)由已知,,解得,所以橢圓的方程為(2)由(1)得過點的直線為,由,得,所以,所以,依題意,因為,,成等比數(shù)列,所以,所以,即,當時,,無解,當時,,解得,所以,解得,所以,當,,成等比數(shù)列時,【點睛】方法點睛(1)求橢圓方程的常用方法:①待定系數(shù)法;②定義法;③相關點法(2)直線與圓錐曲線的綜合問題,常將直線方程代入圓錐曲線方程,從而得到關于(或)的一元二次方程,設出交點坐標),利用韋達定理得出坐標的關系,同時注意判別式大于零求出參數(shù)的范圍(或者得到關于參數(shù)的不等關系),然后將所求轉化到參數(shù)上來再求解.如本題及,聯(lián)立即可求解.注意圓錐曲線問題中,常參數(shù)多、字母多、運算繁瑣,應注意設而不求的思想、整體思想的應用.屬于中檔題.20、(1)0.08,150;(2)88%;(3)18;(4)51.【解析】頻率分布直方圖以面積的形式反映數(shù)據(jù)落在各小組內(nèi)的頻率大小,所以計算面積之比即為所求小組的頻率.可用此方法計算(1),(2),由公式直接計算可得(1)中樣本容量;根據(jù)(2)問中的達標率,可計算不達標率,從而求出不達標人數(shù),可得(3);單獨計算第三組的頻率,由公式計算頻數(shù),可求出(4).【小問1詳解】頻率分布直方圖以面積形式反映數(shù)據(jù)落在各小組內(nèi)的頻率大小,因此第二小組的頻率為=0.08所以樣本容量==150.【小問2詳解】由直方圖可估計該校高一年級學生的達標率為×100%=88%.【小問3詳解】由(1)(2)知達標率為88%,樣本量為150,不達標的學生頻率為1-0.88=0.12所以樣本中不達標的學生人數(shù)為150×0.12=18(人)【小問4詳解】第三小組的頻率為=0.34又因為樣本量為150,所以第三組的頻數(shù)為150×0.34=5121、(1);(2)或.【解析】(1)由條件得,再結合,可求得橢圓方程;(2)由題意設直線l:x=my+4,設M(x1,y1),N(x2,y2),直線方程與橢圓方程聯(lián)立方程組,消去,整理后利用根與系的關系可得,,再由OM⊥ON,可得x1x2+y1y2=0,從而可列出關于的方程,進而可求出的值,即可得到直線的方程【詳解】(1)由條件知,解得,則故橢圓的方程為(2)顯然直線l的斜率存在,且斜率不為0,設直線l:x=my+4交橢圓C于M(x1,y1),N(x2,y2),由,當=(24m)2-4(3m2+4)×36>0時,有,,由條件OM⊥ON可得,,即x1x2+y1y2=0,從而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且滿足>0從而直線l方程為或22、(1);(2)面積最小值是4【解析】本題主要考查拋物線的標準方程及其幾何性質、直線與圓錐曲線的位置關系、直線的斜率等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,依題意F(1,0),設直線AB的方程為.將直線AB的方程與拋物線的方程聯(lián)立,得,由此能夠求出直線AB的斜率;第二問,由點C與原點O關于點M對稱,得M是線段OC的中點,從而點O與點C到直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025振動沉管灌注樁整體機械出租合同
- 2025不動產(chǎn)權籍調(diào)查技術咨詢服務合同
- 課題申報參考:凌家灘史前玉器藝術價值挖掘與傳承創(chuàng)新路徑研究
- 學科交叉融合與創(chuàng)新能力提升
- 會展合同管理與風險防范考核試卷
- 二零二五年度森林碳匯樹木種植項目合同4篇
- 2025年滬教版選擇性必修1歷史下冊階段測試試卷
- 2025年新世紀版九年級地理上冊階段測試試卷
- 2025年冀教版九年級地理上冊月考試卷
- 2025年華師大版選擇性必修1化學下冊月考試卷
- 2024-2025學年北京石景山區(qū)九年級初三(上)期末語文試卷(含答案)
- 第一章 整式的乘除 單元測試(含答案) 2024-2025學年北師大版數(shù)學七年級下冊
- 春節(jié)聯(lián)歡晚會節(jié)目單課件模板
- 中國高血壓防治指南(2024年修訂版)
- 糖尿病眼病患者血糖管理
- 抖音音樂推廣代運營合同樣本
- 教育促進會會長總結發(fā)言稿
- 北師大版(2024新版)七年級上冊數(shù)學第四章《基本平面圖形》測試卷(含答案解析)
- 心理調(diào)適教案調(diào)整心態(tài)積極應對挑戰(zhàn)
- 噴漆外包服務合同范本
- JT-T-390-1999突起路標行業(yè)標準
評論
0/150
提交評論