2023年高考數(shù)學(xué)一輪復(fù)習(xí)(全國(guó)版文) 第6章 6.5 數(shù)列求和_第1頁(yè)
2023年高考數(shù)學(xué)一輪復(fù)習(xí)(全國(guó)版文) 第6章 6.5 數(shù)列求和_第2頁(yè)
2023年高考數(shù)學(xué)一輪復(fù)習(xí)(全國(guó)版文) 第6章 6.5 數(shù)列求和_第3頁(yè)
2023年高考數(shù)學(xué)一輪復(fù)習(xí)(全國(guó)版文) 第6章 6.5 數(shù)列求和_第4頁(yè)
2023年高考數(shù)學(xué)一輪復(fù)習(xí)(全國(guó)版文) 第6章 6.5 數(shù)列求和_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

§6.5數(shù)列求和考試要求1.熟練掌握等差、等比數(shù)列的前n項(xiàng)和公式.2.掌握非等差數(shù)列、非等比數(shù)列求和的幾種常見(jiàn)方法.知識(shí)梳理數(shù)列求和的幾種常用方法1.公式法直接利用等差數(shù)列、等比數(shù)列的前n項(xiàng)和公式求和.(1)等差數(shù)列的前n項(xiàng)和公式:Sn=eq\f(na1+an,2)=na1+eq\f(nn-1,2)d.(2)等比數(shù)列的前n項(xiàng)和公式:Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(na1,q=1,,\f(a1-anq,1-q)=\f(a11-qn,1-q),q≠1.))2.分組求和法與并項(xiàng)求和法(1)若一個(gè)數(shù)列是由若干個(gè)等差數(shù)列或等比數(shù)列或可求和的數(shù)列組成,則求和時(shí)可用分組求和法,分別求和后相加減.(2)形如an=(-1)n·f(n)類型,常采用兩項(xiàng)合并求解.3.錯(cuò)位相減法如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那么這個(gè)數(shù)列的前n項(xiàng)和即可用此法來(lái)求,如等比數(shù)列的前n項(xiàng)和公式就是用此法推導(dǎo)的.4.裂項(xiàng)相消法(1)把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)中間的一些項(xiàng)可以相互抵消,從而求得其和.(2)常見(jiàn)的裂項(xiàng)技巧①eq\f(1,nn+1)=eq\f(1,n)-eq\f(1,n+1).②eq\f(1,nn+2)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n)-\f(1,n+2))).③eq\f(1,2n-12n+1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2n-1)-\f(1,2n+1))).④eq\f(1,\r(n)+\r(n+1))=eq\r(n+1)-eq\r(n).思考辨析判斷下列結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)(1)若數(shù)列{an}為等比數(shù)列,且公比不等于1,則其前n項(xiàng)和Sn=eq\f(a1-an+1,1-q).(√)(2)當(dāng)n≥2時(shí),eq\f(1,n2-1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n-1)-\f(1,n+1))).(√)(3)求Sn=a+2a2+3a3+…+nan時(shí),只要把上式等號(hào)兩邊同時(shí)乘a即可根據(jù)錯(cuò)位相減法求得.(×)(4)求數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,2n)+2n+3))的前n項(xiàng)和可用分組轉(zhuǎn)化法求和.(√)教材改編題1.?dāng)?shù)列{an}的通項(xiàng)公式是an=(-1)n(2n-1),則該數(shù)列的前100項(xiàng)之和為()A.-200 B.-100C.200 D.100答案D解析S100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.2.等差數(shù)列{an}中,已知公差d=eq\f(1,2),且a1+a3+…+a99=50,則a2+a4+…+a100等于()A.50 B.75C.100 D.125答案B解析a2+a4+…+a100=(a1+d)+(a3+d)+…+(a99+d)=(a1+a3+…+a99)+50d=50+25=75.3.在數(shù)列{an}中,an=eq\f(1,nn+1),若{an}的前n項(xiàng)和為eq\f(2022,2023),則項(xiàng)數(shù)n=________.答案2022解析an=eq\f(1,nn+1)=eq\f(1,n)-eq\f(1,n+1),∴Sn=1-eq\f(1,2)+eq\f(1,2)-eq\f(1,3)+…+eq\f(1,n)-eq\f(1,n+1)=1-eq\f(1,n+1)=eq\f(n,n+1)=eq\f(2022,2023),∴n=2022.題型一分組求和與并項(xiàng)求和例1(2022·西安質(zhì)檢)已知各項(xiàng)都不相等的等差數(shù)列{an},a6=6,又a1,a2,a4成等比數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=+(-1)nan,求數(shù)列{bn}的前2n項(xiàng)和T2n.解(1)∵{an}為各項(xiàng)都不相等的等差數(shù)列,a6=6,且a1,a2,a4成等比數(shù)列.∴eq\b\lc\{\rc\(\a\vs4\al\co1(a6=a1+5d=6,,a1+d2=a1a1+3d,,d≠0,))解得a1=1,d=1,∴數(shù)列{an}的通項(xiàng)公式an=1+(n-1)×1=n.(2)由(1)知,bn=2n+(-1)nn,記數(shù)列{bn}的前2n項(xiàng)和為T(mén)2n,則T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).記A=21+22+…+22n,B=-1+2-3+4-…+2n,則A=eq\f(21-22n,1-2)=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故數(shù)列{bn}的前2n項(xiàng)和T2n=A+B=22n+1+n-2.延伸探究在本例(2)中,如何求數(shù)列{bn}的前n項(xiàng)和Tn?解由本例(2)知bn=2n+(-1)nn.當(dāng)n為偶數(shù)時(shí),Tn=(21+22+…+2n)+[-1+2-3+4-…-(n-1)+n]=eq\f(2-2n+1,1-2)+eq\f(n,2)=2n+1+eq\f(n,2)-2;當(dāng)n為奇數(shù)時(shí),Tn=(21+22+…+2n)+[-1+2-3+4-…-(n-2)+(n-1)-n]=2n+1-2+eq\f(n-1,2)-n=2n+1-eq\f(n,2)-eq\f(5,2).所以Tn=eq\b\lc\{\rc\(\a\vs4\al\co1(2n+1+\f(n,2)-2,n為偶數(shù),,2n+1-\f(n,2)-\f(5,2),n為奇數(shù).))教師備選(2020·新高考全國(guó)Ⅰ)已知公比大于1的等比數(shù)列{an}滿足a2+a4=20,a3=8.(1)求{an}的通項(xiàng)公式;(2)記bm為{an}在區(qū)間(0,m](m∈N*)中的項(xiàng)的個(gè)數(shù),求數(shù)列{bm}的前100項(xiàng)和S100.解(1)由于數(shù)列{an}是公比大于1的等比數(shù)列,設(shè)首項(xiàng)為a1,公比為q,依題意有eq\b\lc\{\rc\(\a\vs4\al\co1(a1q+a1q3=20,,a1q2=8,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a1=32,,q=\f(1,2)))(舍)或eq\b\lc\{\rc\(\a\vs4\al\co1(a1=2,,q=2,))所以{an}的通項(xiàng)公式為an=2n,n∈N*.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b1對(duì)應(yīng)的區(qū)間為(0,1],則b1=0;b2,b3對(duì)應(yīng)的區(qū)間分別為(0,2],(0,3],則b2=b3=1,即有2個(gè)1;b4,b5,b6,b7對(duì)應(yīng)的區(qū)間分別為(0,4],(0,5],(0,6],(0,7],則b4=b5=b6=b7=2,即有22個(gè)2;b8,b9,…,b15對(duì)應(yīng)的區(qū)間分別為(0,8],(0,9],…,(0,15],則b8=b9=…=b15=3,即有23個(gè)3;b16,b17,…,b31對(duì)應(yīng)的區(qū)間分別為(0,16],(0,17],…,(0,31],則b16=b17=…=b31=4,即有24個(gè)4;b32,b33,…,b63對(duì)應(yīng)的區(qū)間分別為(0,32],(0,33],…,(0,63],則b32=b33=…=b63=5,即有25個(gè)5;b64,b65,…,b100對(duì)應(yīng)的區(qū)間分別為(0,64],(0,65],…,(0,100],則b64=b65=…=b100=6,即有37個(gè)6.所以S100=1×2+2×22+3×23+4×24+5×25+6×37=480.思維升華(1)若數(shù)列{cn}的通項(xiàng)公式為cn=an±bn,且{an},{bn}為等差或等比數(shù)列,可采用分組求和法求數(shù)列{cn}的前n項(xiàng)和.(2)若數(shù)列{cn}的通項(xiàng)公式為cn=eq\b\lc\{\rc\(\a\vs4\al\co1(an,n為奇數(shù),,bn,n為偶數(shù),))其中數(shù)列{an},{bn}是等比數(shù)列或等差數(shù)列,可采用分組求和法求{cn}的前n項(xiàng)和.跟蹤訓(xùn)練1(2022·重慶質(zhì)檢)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=9,S5=25.(1)求數(shù)列{an}的通項(xiàng)公式及Sn;(2)設(shè)bn=(-1)nSn,求數(shù)列{bn}的前n項(xiàng)和Tn.解(1)設(shè)數(shù)列{an}的公差為d,由S5=5a3=25得a3=a1+2d=5,又a5=9=a1+4d,所以d=2,a1=1,所以an=2n-1,Sn=eq\f(n1+2n-1,2)=n2.(2)結(jié)合(1)知bn=(-1)nn2,當(dāng)n為偶數(shù)時(shí),Tn=(b1+b2)+(b3+b4)+(b5+b6)+…+(bn-1+bn)=(-12+22)+(-32+42)+(-52+62)+…+[-(n-1)2+n2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n-(n-1)][n+(n-1)]=1+2+3+…+n=eq\f(nn+1,2).當(dāng)n為奇數(shù)時(shí),n-1為偶數(shù),Tn=Tn-1+(-1)n·n2=eq\f(n-1n,2)-n2=-eq\f(nn+1,2).綜上可知,Tn=eq\f(-1nnn+1,2).題型二錯(cuò)位相減法求和例2(12分)(2021·全國(guó)乙卷)設(shè){an}是首項(xiàng)為1的等比數(shù)列,數(shù)列{bn}滿足bn=eq\f(nan,3).已知a1,3a2,9a3成等差數(shù)列.(1)求{an}和{bn}的通項(xiàng)公式;[切入點(diǎn):設(shè)基本量q](2)記Sn和Tn分別為{an}和{bn}的前n項(xiàng)和.證明:Tn<eq\f(Sn,2).[關(guān)鍵點(diǎn):bn=n·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))n]教師備選(2020·全國(guó)Ⅰ)設(shè){an}是公比不為1的等比數(shù)列,a1為a2,a3的等差中項(xiàng).(1)求{an}的公比;(2)若a1=1,求數(shù)列{nan}的前n項(xiàng)和.解(1)設(shè){an}的公比為q,∵a1為a2,a3的等差中項(xiàng),∴2a1=a2+a3=a1q+a1q2,a1≠0,∴q2+q-2=0,∵q≠1,∴q=-2.(2)設(shè){nan}的前n項(xiàng)和為Sn,a1=1,an=(-2)n-1,Sn=1×1+2×(-2)+3×(-2)2+…+n(-2)n-1, ①-2Sn=1×(-2)+2×(-2)2+3×(-2)3+…+(n-1)·(-2)n-1+n(-2)n, ②①-②得,3Sn=1+(-2)+(-2)2+…+(-2)n-1-n(-2)n=eq\f(1--2n,1--2)-n(-2)n=eq\f(1-1+3n-2n,3),∴Sn=eq\f(1-1+3n-2n,9),n∈N*.思維升華(1)如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項(xiàng)和時(shí),常采用錯(cuò)位相減法.(2)錯(cuò)位相減法求和時(shí),應(yīng)注意:①在寫(xiě)出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”,以便于下一步準(zhǔn)確地寫(xiě)出“Sn-qSn”的表達(dá)式.②應(yīng)用等比數(shù)列求和公式必須注意公比q是否等于1,如果q=1,應(yīng)用公式Sn=na1.跟蹤訓(xùn)練2(2021·浙江)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=-eq\f(9,4),且4Sn+1=3Sn-9(n∈N*).(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)數(shù)列{bn}滿足3bn+(n-4)an=0(n∈N*),記{bn}的前n項(xiàng)和為T(mén)n.若Tn≤λbn,對(duì)任意n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.解(1)因?yàn)?Sn+1=3Sn-9,所以當(dāng)n≥2時(shí),4Sn=3Sn-1-9,兩式相減可得4an+1=3an,即eq\f(an+1,an)=eq\f(3,4).當(dāng)n=1時(shí),4S2=4eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(9,4)+a2))=-eq\f(27,4)-9,解得a2=-eq\f(27,16),所以eq\f(a2,a1)=eq\f(3,4).所以數(shù)列{an}是首項(xiàng)為-eq\f(9,4),公比為eq\f(3,4)的等比數(shù)列,所以an=-eq\f(9,4)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n-1=-eq\f(3n+1,4n).(2)因?yàn)?bn+(n-4)an=0,所以bn=(n-4)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n.所以Tn=-3×eq\f(3,4)-2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))2-1×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))3+0×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))4+…+(n-4)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n, ①且eq\f(3,4)Tn=-3×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))2-2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))3-1×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))4+0×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))5+…+(n-5)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n+(n-4)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n+1, ②①-②得eq\f(1,4)Tn=-3×eq\f(3,4)+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))3+…+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n-(n-4)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n+1=-eq\f(9,4)+eq\f(\f(9,16)\b\lc\[\rc\](\a\vs4\al\co1(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n-1)),1-\f(3,4))-(n-4)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n+1=-n×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n+1,所以Tn=-4n×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n+1.因?yàn)門(mén)n≤λbn對(duì)任意n∈N*恒成立,所以-4n×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n+1≤λeq\b\lc\[\rc\](\a\vs4\al\co1(n-4×\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)))n))恒成立,即-3n≤λ(n-4)恒成立,當(dāng)n<4時(shí),λ≤eq\f(-3n,n-4)=-3-eq\f(12,n-4),此時(shí)λ≤1;當(dāng)n=4時(shí),-12≤0恒成立,當(dāng)n>4時(shí),λ≥eq\f(-3n,n-4)=-3-eq\f(12,n-4),此時(shí)λ≥-3.所以-3≤λ≤1.題型三裂項(xiàng)相消法求和例3(2022·晉中模擬)設(shè){an}是各項(xiàng)都為正數(shù)的單調(diào)遞增數(shù)列,已知a1=4,且an滿足關(guān)系式:an+1+an=4+2eq\r(an+1an),n∈N*.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=eq\f(1,an-1),求數(shù)列{bn}的前n項(xiàng)和Sn.解(1)因?yàn)閍n+1+an=4+2eq\r(an+1an),n∈N*,所以an+1+an-2eq\r(an+1an)=4,即(eq\r(an+1)-eq\r(an))2=4,又{an}是各項(xiàng)為正數(shù)的單調(diào)遞增數(shù)列,所以eq\r(an+1)-eq\r(an)=2,又eq\r(a1)=2,所以{eq\r(an)}是首項(xiàng)為2,公差為2的等差數(shù)列,所以eq\r(an)=2+2(n-1)=2n,所以an=4n2.(2)bn=eq\f(1,an-1)=eq\f(1,4n2-1)=eq\f(1,2n-12n+1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2n-1)-\f(1,2n+1))),所以Sn=b1+b2+…+bn=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3)))+eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-\f(1,5)))+…+eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2n-1)-\f(1,2n+1)))=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2n+1)))=eq\f(n,2n+1).教師備選設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=3an-1.(1)求{an}的通項(xiàng)公式;(2)若bn=eq\f(3n,an+1an+1+1),求{bn}的前n項(xiàng)和Tn,證明:eq\f(3,8)≤Tn<eq\f(3,4).(1)解因?yàn)?Sn=3an-1,所以2S1=2a1=3a1-1,即a1=1.當(dāng)n≥2時(shí),2Sn-1=3an-1-1,則2Sn-2Sn-1=2an=3an-3an-1,整理得eq\f(an,an-1)=3,則數(shù)列{an}是以1為首項(xiàng),3為公比的等比數(shù)列,故an=1×3n-1=3n-1.(2)證明由(1)得bn=eq\f(3n,3n-1+13n+1)=eq\f(3,2)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3n-1+1)-\f(1,3n+1))),所以Tn=eq\f(3,2)×eq\b\lc\[\rc\(\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,30+1)-\f(1,31+1)))+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,31+1)-\f(1,32+1)))+))eq\b\lc\\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,32+1)-\f(1,33+1)))+…+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3n-1+1)-\f(1,3n+1))))),即Tn=eq\f(3,2)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)-\f(1,3n+1)))=eq\f(3,4)-eq\f(\f(3,2),3n+1),所以Tn<eq\f(3,4),又因?yàn)門(mén)n為遞增數(shù)列,所以Tn≥T1=eq\f(3,4)-eq\f(3,8)=eq\f(3,8),所以eq\f(3,8)≤Tn<eq\f(3,4).思維升華利用裂項(xiàng)相消法求和的注意事項(xiàng)(1)抵消后不一定只剩下第一項(xiàng)和最后一項(xiàng),也有可能前面剩兩項(xiàng),后面也剩兩項(xiàng).(2)將通項(xiàng)裂項(xiàng)后,有時(shí)需要調(diào)整前面的系數(shù),如:若{an}是等差數(shù)列,則eq\f(1,anan+1)=eq\f(1,d)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,an)-\f(1,an+1))),eq\f(1,anan+2)=eq\f(1,2d)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,an)-\f(1,an+2))).跟蹤訓(xùn)練3+2n-2).(1)求證:數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,n)))是等差數(shù)列;(2)記bn=eq\f(2n+1,a\o\al(2,n)),求數(shù)列{bn}的前n項(xiàng)和Sn.(1)證明當(dāng)n≥2時(shí),(n-1)an=n(an-1+2n-2),將上式兩邊都除以n(n-1),得eq\f(an,n)=eq\f(an-1+2n-2,n-1),即eq\f(an,n)-eq\f(an-1,n-1)=2,所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,n)))是以eq\f(a1,1)=4為首項(xiàng),2為公差的等差數(shù)列.(2)解由(1)得eq\f(an,n)=4+2(n-1)=2n+2,即an=2n(n+1),所以bn=eq\f(2n+1,a\o\al(2,n))=eq\f(1,4)eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,n2)-\f(1,n+12))),所以Sn=eq\f(1,4)eq\b\lc\{\rc\(\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,22)))+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,22)-\f(1,32)))+…+))eq\b\lc\\rc\}(\a\vs4\al\co1(\b\lc\[\rc\](\a\vs4\al\co1(\f(1,n2)-\f(1,n+12)))))=eq\f(1,4)eq\b\lc\[\rc\](\a\vs4\al\co1(1-\f(1,n+12)))=eq\f(n2+2n,4n+12).課時(shí)精練1.已知在等差數(shù)列{an}中,Sn為其前n項(xiàng)和,且a3=5,S7=49.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=+an,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且Tn≥1000,求n的取值范圍.解(1)由等差數(shù)列性質(zhì)知,S7=7a4=49,則a4=7,故公差d=a4-a3=7-5=2,故an=a3+(n-3)d=2n-1.(2)由(1)知bn=22n-1+2n-1,Tn=21+1+23+3+…+22n-1+2n-1=21+23+…+22n-1+(1+3+…+2n-1)=eq\f(21-22n+1,1-4)+eq\f(n1+2n-1,2)=eq\f(22n+1,3)+n2-eq\f(2,3).易知Tn單調(diào)遞增,且T5=707<1000,T6=2766>1000,故Tn≥1000,解得n≥6,n∈N*.2.(2020·全國(guó)Ⅲ改編)設(shè)數(shù)列{an}滿足a1=3,an+1=3an-4n.(1)計(jì)算a2,a3,猜想{an}的通項(xiàng)公式;(2)求數(shù)列{2nan}的前n項(xiàng)和Sn.解(1)由題意可得a2=3a1-4=9-4=5,a3=3a2-8=15-8=7,由數(shù)列{an}的前三項(xiàng)可猜想數(shù)列{an}是以3為首項(xiàng),2為公差的等差數(shù)列,即an=2n+1.(2)由(1)可知,an·2n=(2n+1)·2n,Sn=3×2+5×22+7×23+…+(2n-1)·2n-1+(2n+1)·2n,①2Sn=3×22+5×23+7×24+…+(2n-1)·2n+(2n+1)·2n+1,②由①-②得,-Sn=6+2×(22+23+…+2n)-(2n+1)·2n+1=6+2×eq\f(22×1-2n-1,1-2)-(2n+1)·2n+1=(1-2n)·2n+1-2,即Sn=(2n-1)·2n+1+2.3.(2022·合肥模擬)已知數(shù)列{an}滿足:a1=2,an+1=an+2n.(1)求{an}的通項(xiàng)公式;(2)若bn=log2an,Tn=eq\f(1,b1b2)+eq\f(1,b2b3)+…+eq\f(1,bnbn+1),求Tn.解(1)由已知得an+1-an=2n,當(dāng)n≥2時(shí),an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+2+22+…+2n-1=2+eq\f(21-2n-1,1-2)=2n.又a1=2,也滿足上式,故an=2n.(2)由(1)可知,bn=log2an=n,eq\f(1,bnbn+1)=eq\f(1,nn+1)=eq\f(1,n)-eq\f(1,n+1),Tn=eq\f(1,b1b2)+eq\f(1,b2b3)+…+eq\f(1,bnbn+1)=eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)-\f(1,3)))+…+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n)-\f(1,n+1)))=1-eq\f(1,n+1)=eq\f(n,n+1),故Tn=eq\f(n,n+1).4.(2022·濟(jì)寧模擬)已知數(shù)列{an}是正項(xiàng)等比數(shù)列,滿足a3是2a1,3a2的等差中項(xiàng),a4=16.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=(-1)nlog2a2n+1,求數(shù)列{bn}的前n項(xiàng)和Tn.解(1)設(shè)等比數(shù)列{an}的公比為q,因?yàn)閍3是2a1,3a2的等差中項(xiàng),所以2a3=2a1+3a2,即2a1q2=2a1+3a1q,因?yàn)閍1≠0,所以2q2-3q-2=0,解得q=2或q=-eq\f(1,2),因?yàn)閿?shù)列{an}是正項(xiàng)等比數(shù)列,所以q=2.所以an=a4·qn-4=2n.(2)方法一(分奇偶、并項(xiàng)求和)由(1)可知,a2n+1=22n+1,所以bn=(-1)n·log2a2n+1=(-1)n·log222n+1=(-1)n·(2n+1),①若n為偶數(shù),Tn=-3+5-7+9-…-(2n-1)+(2n+1)=(-3+5)+(-7+9)+…+[-(2n-1)+(2n+1)]=2×eq\f(n,2)=n;②若n為奇數(shù),當(dāng)n≥3時(shí),Tn=Tn-1+bn=n-1-(2n+1)=-n-2,當(dāng)n=1時(shí),T1=-3適合上式,綜上得Tn=eq\b\lc\{\rc\(\a\vs4\al\co1(n,n為偶數(shù),,-n-2,n為奇數(shù)))(或Tn=(n+1)(-1)n-1,n∈N*).方法二(錯(cuò)位相減法)由(1)可知,a2n+1=22n+1,所以bn=(-1)n·log2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論