版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁山東省安丘市紅沙溝鎮(zhèn)紅沙溝中學(xué)2025屆九上數(shù)學(xué)開學(xué)考試試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)已知菱形的兩條對角線分別為6和8,則菱形的面積為()A.48 B.25 C.24 D.122、(4分)如圖,在中,,垂足為,,,則的長為()A. B. C. D.3、(4分)已知一元二次方程有一個根為2,則另一根為A.2 B.3 C.4 D.84、(4分)武侯區(qū)某學(xué)校計劃選購甲,乙兩種圖書為“初中數(shù)學(xué)分享學(xué)習(xí)課堂之生講生學(xué)”初賽的獎品.已知甲圖書的單價是乙圖書單價的1.5倍,用600元單獨購買甲種圖書比單獨購買乙種圖書少10本,設(shè)乙種圖書的價為x元,依據(jù)題意列方程正確的是()A. B. C. D.5、(4分)如圖,AB=AC,BE⊥AC于點E,CF⊥AB于點F,BE,CF交于點D,則下列結(jié)論中不正確的是()A.△ABE≌△ACF B.點D在∠BAC的平分線上C.△BDF≌△CDE D.D是BE的中點6、(4分)如圖,在平行四邊形ABCD中,下列各式不一定正確的是()A. B.C. D.7、(4分)如圖,在平行四邊形ABCD中,對角線相交于點O,AC=AB,E是AB邊的中點,G、F為BC上的點,連接OG和EF,若AB=13,BC=10,GF=5,則圖中陰影部分的面積為()A.48 B.36 C.30 D.248、(4分)如圖,在Rt△ABC中,∠ACB=90°.AC=BC.邊AC落在數(shù)軸上,點A表示的數(shù)是1,點C表示的數(shù)是3,負(fù)半軸上有一點B?,且AB?=AB,點B?所表示的數(shù)是()A.-2 B.-2 C.2-1 D.1-2二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)分解因式:2x2-8x+8=__________.10、(4分)如圖,在四邊形ABCD中,P是對角線BD的中點,E、F分別是AB、CD的中點,AD=BC,∠EPF=147°,則∠PFE的度數(shù)是___.11、(4分)若,則的值為______.12、(4分)如圖,在矩形ABCD中,E是AB邊上的中點,將△BCE沿CE翻折得到△FCE,連接AF.若∠EAF=75°,那么∠BCF的度數(shù)為__________.13、(4分)計算:(﹣1)0+(﹣)﹣2=_____.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,在△ABC中,AB=AC,∠BAC=120°,E為BC上一點,以CE為直徑作⊙O恰好經(jīng)過A、C兩點,PF⊥BC交BC于點G,交AC于點F.(1)求證:AB是⊙O的切線;(2)如果CF=2,CP=3,求⊙O的直徑EC.15、(8分)某社區(qū)準(zhǔn)備在甲乙兩位射箭愛好者中選出一人參加集訓(xùn),兩人各射了5箭,他們的總成績(單位:環(huán))相同.第1次第2次第3次第4次第5次甲成績94746乙成績757a7(1)a=__,x乙=____(2)①分別計算甲、乙成績的方差.②請你從平均數(shù)和方差的角度分析,誰將被選中.16、(8分)為選拔參加八年級數(shù)學(xué)“拓展性課程”活動人選,數(shù)學(xué)李老師對本班甲、乙兩名學(xué)生以前經(jīng)歷的10次測驗成績(分)進行了整理、分析(見圖①):(1)寫出a,b的值;(2)如要推選1名學(xué)生參加,你推薦誰?請說明你推薦的理由.17、(10分)某超市銷售一種水果,迸價為每箱40元,規(guī)定售價不低于進價.現(xiàn)在的售價為每箱72元,每月可銷售60箱.經(jīng)市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降低2元,則每月的銷量將增加10箱,設(shè)每箱水果降價x元(x為偶數(shù)),每月的銷量為y箱.(1)寫出y與x之間的函數(shù)關(guān)系式和自變量x的取值范圍.(2)若該超市在銷售過程中每月需支出其他費用500元,則如何定價才能使每月銷售水果的利潤最大?最大利潤是多少元?18、(10分)化簡求值:,從-1,0,1,2中選一個你認(rèn)為合適的m值代入求值.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,BD是矩形ABCD的一條對角線,點E,F(xiàn)分別是BD,DC的中點.若AB=4,BC=3,則AE+EF的長為_____.20、(4分)如圖,四邊形ABCD是正方形,以CD為邊作等邊三角形CDE,BE與AC相交于點M,則∠ADM的度數(shù)是_____.21、(4分)如圖,等腰Rt△ABC中,∠BAC=90°,AB=AC=10,等腰直角三角形ADE繞著點A旋轉(zhuǎn),∠DAE=90°,AD=AE=6,連接BD、CD、CE,點M、P、N分別為DE、DC、BC的中點,連接MP、PN、MN,則△PMN的面積最大值為_____.22、(4分)如圖,在正方形中,點、在對角線上,分別過點、作邊的平行線交于點、,作邊的平行線交于點、.若,則圖中陰影部分圖形的面積和為_____.23、(4分)如圖,有公共頂點A、B的正五邊形和正六邊形,連接AC交正六邊形于點D,則∠ADE的度數(shù)為___.二、解答題(本大題共3個小題,共30分)24、(8分)閱讀材料:小華像這樣解分式方程解:移項,得:通分,得:整理,得:分子值取0,得:x+5=0即:x=﹣5經(jīng)檢驗:x=﹣5是原分式方程的解.(1)小華這種解分式方程的新方法,主要依據(jù)是;(2)試用小華的方法解分式方程25、(10分)一次函數(shù)y=kx+b的圖象與x、y軸分別交于點A(2,0),B(0,4).(1)求該函數(shù)的解析式;(2)O為坐標(biāo)原點,設(shè)OA、AB的中點分別為C、D,P為OB上一動點,求PC+PD的最小值,并求取得最小值時P點的坐標(biāo).26、(12分)如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).(1)請畫出△ABC向左平移5個單位長度后得到的△ABC;(2)請畫出△ABC關(guān)于原點對稱的△ABC;(3)在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
參考答案與詳細(xì)解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】
根據(jù)菱形的面積等于對角線乘積的一半列式進行計算即可得解.【詳解】解:∵菱形的兩條對角線的長度分別為6和8,
∴它的面積=×6×8=1.
故選:C.本題考查了菱形的性質(zhì),菱形的面積可以用對角線乘積的一半求解,也可以利用底乘以高求解.2、A【解析】
根據(jù)題意,可以證得△ACD∽△CBD,進而得到,由已知數(shù)據(jù)代入即可.【詳解】由題意知,,∴∠ADC=∠BDC=90°,∠A=∠BCD,∴△ACD∽△CBD,∴,即,∵,,∴CD=4,故選:A.本題考查了直角三角形的性質(zhì),相似三角形的判定和性質(zhì),掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.3、C【解析】試題分析:利用根與系數(shù)的關(guān)系來求方程的另一根.設(shè)方程的另一根為α,則α+2=6,解得α=1.考點:根與系數(shù)的關(guān)系.4、A【解析】
根據(jù)“600元單獨購買甲種圖書比單獨購買乙種圖書少10本”列出相應(yīng)的分式方程,本題得以解決.【詳解】由題意可得,,故選:A.本題考查由實際問題抽象出分式方程,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的分式方程.5、D【解析】
根據(jù)全等三角形的判定對各個選項進行分析,從而得到答案.做題時,要結(jié)合已知條件與三角形全等的判定方法逐個驗證.【詳解】∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正確;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故點D在∠BAC的平分線上,正確;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正確;D.無法判定,錯誤;故選D.6、D【解析】由?ABCD的性質(zhì)及圖形可知:A、∠1和∠2是鄰補角,故∠1+∠2=180°,正確;B、因為AD∥BC,所以∠2+∠3=180°,正確;C、因為AB∥CD,所以∠3+∠4=180°,正確;D、根據(jù)平行四邊形的對角相等,∠2=∠4,∠2+∠4=180°不一定正確;故選D.7、C【解析】
連接EO,設(shè)EF,GO交于點H,過點H作NM⊥BC與M,交EO于N,過點A作AP⊥BC,將陰影部分分割為△AEO,△EHO,△GHF,分別求三個三角形的面積再相加即可.【詳解】解:如圖連接EO,設(shè)EF,GO交于點H,過點H作NM⊥BC與M,交EO于N,∵四邊形ABCD為平行四邊形,O為對角線交點,∴O為AC中點,又∵E為AB中點,∴EO為三角形ABC的中位線,∴EO∥BC,∴MN⊥EO且MN=即EO=5,∵AC=AB,∴BP=PCBC=5,在Rt△APB中,,∴三角形AEO的以EO為底的高為AP=6,MN==6∴,,∴,故選:C本題考查了平行四邊形的性質(zhì)、三角形與四邊形的面積關(guān)系;熟練掌握平行四邊形的性質(zhì)是解決問題的關(guān)鍵.8、D【解析】
先求出AC的長度,再根據(jù)勾股定理求出AB的長度,然后根據(jù)B1到原點的距離是2-1,即可得到點B1所表示的數(shù).【詳解】解:根據(jù)題意,AC=3-1=2,∵∠ACB=90°,AC=BC,∴,∴B1到原點的距離是2-1.又∵B′在原點左側(cè),∴點B1表示的數(shù)是1-2.故選D.本題主要考查了實數(shù)與數(shù)軸,勾股定理,求出AB的長度是解題的關(guān)鍵.解題時注意實數(shù)與數(shù)軸上的點是一一對應(yīng)關(guān)系.二、填空題(本大題共5個小題,每小題4分,共20分)9、2(x-2)2【解析】
先運用提公因式法,再運用完全平方公式.【詳解】:2x2-8x+8=.故答案為2(x-2)2.本題考核知識點:因式分解.解題關(guān)鍵點:熟練掌握分解因式的基本方法.10、16.5°【解析】
根據(jù)三角形中位線定理得到PE=AD,PF=BC,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可.【詳解】解:∵P是BD的中點,E是AB的中點,∴PE=AD,同理,PF=BC,∵AD=BC,∴PE=PF,∴∠PFE=×(180°-∠EPF)=16.5°,故答案為:16.5°.本題考查的是三角形中位線定理、等腰三角形的性質(zhì)、三角形內(nèi)角和定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.11、.【解析】
由可得,化簡即可得到,再計算,即可求得=.【詳解】∵,∴,∴,∴,∴=.故答案為:.本題考查了完全平方公式的變形應(yīng)用,正確求得是解決問題的關(guān)鍵.12、30°【解析】
解:∵四邊形ABCD是矩形,
∴∠B=90°,
∵E為邊AB的中點,
∴AE=BE,
由折疊的性質(zhì)可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,F(xiàn)E=BE,
∴AE=FE,
∴∠EFA=∠EAF=75°,
∴∠BEF=∠EAF+∠EFA=150°,
∴∠CEB=∠FEC=75°,
∴∠FCE=∠BCE=90°-75°=15°,
∴∠BCF=30°,
故答案為30°.本題考查了翻折變換的性質(zhì)、矩形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)以及三角形的外角性質(zhì);熟練掌握翻折變換和矩形的性質(zhì)是解決問題的關(guān)鍵.13、5【解析】
按順序分別進行0次冪運算、負(fù)指數(shù)冪運算,然后再進行加法運算即可.【詳解】(﹣1)0+(﹣)﹣2=1+4=5,故答案為:5.本題考查了實數(shù)的運算,涉及了0指數(shù)冪、負(fù)整數(shù)指數(shù)冪,熟練掌握各運算的運算法則是解題的關(guān)鍵.三、解答題(本大題共5個小題,共48分)14、(1)見解析;(2)⊙O的直徑EC=1.【解析】
(1)若要證明AB是⊙O的切線,則可連接AO,再證明AO⊥AB即可.
(2)連接OP,設(shè)OG為x,在直角三角形FCG中,由CF和角ACB為10°,利用10°角所對的直角邊等于斜邊的一半及勾股定理求出CG的長,即可表示出半徑OC和OP的長,在直角三角形CGP中利用勾股定理表示出PG的長,然后在直角三角形OPG中,利用勾股定理列出關(guān)于x的方程,求出方程的解即可得到x的值,然后求出直徑即可.【詳解】證明:(1)連接AO,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=10°,∵AO=CO,∴∠0AC=∠OCA=10°,∴∠BAO=120°-10°=90°,∵OA是半徑∴AB是⊙O的切線;(2)解:連接OP,∵PF⊥BC,∴∠FGC=∠EGP=90°,∵CF=2,∠FCG=10°,∴FG=1,∴在Rt△FGC中CG=∵CP=1.∴Rt△GPC中,PG=設(shè)OG=x,則OC=x+,連接OP,,顯然OP=OC=x+在Rt△OPG中,由勾股定理知即(x+)2=x2+()2∴x.∴⊙O的直徑EC=EG+CG=2x++=1.故答案為:(1)見解析;(2)⊙O的直徑EC=1.本題考查圓的切線的判定,常用的切線的判定方法是連接圓心和某一點再證垂直.15、(1)4,6;(2)乙【解析】
(1)根據(jù)總成績相同可求得a;(2)根據(jù)方差公式,分別求兩者方差.即s2=1n[(x1-x)2+(x2-x)2+...+(xn-x)2];【詳解】(1)由題意得:甲的總成績是:9+4+7+4+6=30,則a=30﹣7﹣7﹣5﹣7=4,x乙(2)甲的方差為:15[(9﹣6)2+(4﹣6)2+(7﹣6)2+(4﹣6)2+(6﹣6)2乙的方差為:15[(7﹣6)2+(5﹣6)2+(7﹣6)2+(4﹣6)2+(7﹣6)2②因為兩人成績的平均水平(平均數(shù))相同,根據(jù)方差得出乙的成績比甲穩(wěn)定,所以乙將被選中;本題考核知識點:平均數(shù),方差.解題關(guān)鍵點:理解平均數(shù)和方差的意義.16、(1)a=84.5,b=81;(2)甲,理由:兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定.【解析】
(1)依據(jù)中位數(shù)和眾數(shù)的定義進行計算即可;(2)依據(jù)平均數(shù)、中位數(shù)、方差以及眾數(shù)的角度分析,即可得到哪個學(xué)生的水平較高.【詳解】(1)甲組數(shù)據(jù)排序后,最中間的兩個數(shù)據(jù)為:84和85,故中位數(shù)a(84+85)=84.5,乙組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)為81,故眾數(shù)b=81;(2)甲,理由:兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定;或:乙,理由:在90≤x≤100的分?jǐn)?shù)段中,乙的次數(shù)大于甲.(答案不唯一,理由須支撐推斷結(jié)論).本題考查了統(tǒng)計表,眾數(shù),中位數(shù)以及方差的綜合運用,利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.求一組數(shù)據(jù)的眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù).17、(1)y=60+5x,(0≤x≤32,且x為偶數(shù));(2)售價為62元時,每月銷售水果的利潤最大,最大利潤是1920元.【解析】
(1)根據(jù)價格每降低2元,平均每月多銷售10箱,由每箱降價元,多賣,據(jù)此可以列出函數(shù)關(guān)系式;(2)由利潤=(售價?成本)×銷售量?每月其他支出列出函數(shù)關(guān)系式,求出最大值.【詳解】解:(1)根據(jù)題意知y=60+5x,(0≤x≤32,且x為偶數(shù));(2)設(shè)每月銷售水果的利潤為w,則w=(72﹣x﹣40)(5x+60)﹣500=﹣5x2+100x+1420=﹣5(x﹣10)2+1920,當(dāng)x=10時,w取得最大值,最大值為1920元,答:當(dāng)售價為62元時,每月銷售水果的利潤最大,最大利潤是1920元.本題主要考查二次函數(shù)的應(yīng)用,由利潤=(售價?成本)×銷售量列出函數(shù)關(guān)系式求最值,用二次函數(shù)解決實際問題是解題的關(guān)鍵.18、,【解析】
根據(jù)分式的混合運算法則運算即可,注意m的值只能取1.【詳解】解:原式===把m=1代入得,原式=.本題考查了分式的化簡求值問題,解題的關(guān)鍵是掌握分式的運算法則.一、填空題(本大題共5個小題,每小題4分,共20分)19、1【解析】
先根據(jù)三角形中位線定理得到的長,再根據(jù)直角三角形斜邊上中線的性質(zhì),即可得到的長,進而得出計算結(jié)果.【詳解】解:∵點E,F(xiàn)分別是的中點,∴FE是△BCD的中位線,.又∵E是BD的中點,∴Rt△ABD中,,故答案為1.本題主要考查了矩形的性質(zhì)以及三角形中位線定理的運用,解題時注意:在直角三角形中,斜邊上的中線等于斜邊的一半;三角形的中位線平行于第三邊,并且等于第三邊的一半.20、75°【解析】
連接BD,根據(jù)BD,AC為正方形的兩條對角線可知AC為BD的垂直平分線,所以∠AMD=AMB,求∠AMD,∠AMB,再根據(jù)三角形內(nèi)角和可得.【詳解】如圖,連接BD,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°-∠BCE)=15°,∵∠BCM=∠BCD=45°,∴∠BMC=180°-(∠BCM+∠EBC)=120°∴∠AMB=180°-∠BMC=60°
∵AC是線段BD的垂直平分線,M在AC上,∴∠AMD=∠AMB=60°,∴∠ADM=180?-∠DAC-∠AMD=180?-45?-60?=75?.故答案為75?本題考核知識點:正方形性質(zhì),等邊三角形.解題關(guān)鍵點:運用正方形性質(zhì),等邊三角形性質(zhì)求角的度數(shù).21、31【解析】
由題意可證△ADB≌△EAC,可得BD=CE,∠ABD=∠ACE,由三角形中位線定理可證△MPN是等腰直角三角形,則S△PMN=PN1=BD1.可得BD最大時,△PMN的面積最大,由等腰直角三角形ADE繞著點A旋轉(zhuǎn),可得D是以A為圓心,AD=6為半徑的圓上一點,可求BD最大值,即可求△PMN的面積最大值.【詳解】∵△ABC,△ADE是等腰直角三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE且AB=AC,AD=AE,∴△ADB≌△AEC,∴DB=EC,∠ABD=∠ACE.∵M,N,P分別是DE,DC,BC的中點,∴MP∥EC,MP=EC,NP=DB,NP∥BD,∴MP=NP,∠DPM=∠DCE,∠PNC=∠DBC.設(shè)∠ACE=x°,∠ACD=y°,∴∠ABD=x°,∠DBC=45°﹣x°=∠PNC,∠DCB=45°﹣y°,∴∠DPM=x°+y°,∠DPN=∠DCB+∠PNC=∠DCB+∠DBC=45°﹣y°+45°﹣x°=90°﹣x°﹣y°,∴∠MPN=90°且PN=PM,∴△PMN是等腰直角三角形,∴S△PMN=PN1=BD1,∴當(dāng)BD最大時,△PMN的面積最大.∵D是以A點為圓心,AD=6為半徑的圓上一點,∴A,B,D共線且D在BA的延長線時,BD最大.此時BD=AB+AD=16,∴△PMN的面積最大值為31.故答案為31.本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),三角形的中位線定理,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.22、2【解析】
首先根據(jù)已知條件,可得出矩形BEPF和矩形BHQG是正方形,陰影部分面積即為△ABD的面積,即可得解.【詳解】解:由已知條件,得∠DBC=∠ABD=∠BPE=∠BQH=45°,∴矩形BEPF和矩形BHQG是正方形,又∵BP、BQ分別為正方形BEPF和正方形BHQG的對角線∴,∴陰影部分的面積即為△ABD的面積,∴故答案為2.此題主要考查正方形的判定,然后利用其性質(zhì)進行等量轉(zhuǎn)換,即可解題.23、84°.【解析】
據(jù)正多邊形的內(nèi)角,可得∠ABE、∠E、∠CAB,根據(jù)四邊形的內(nèi)角和,可得答案.【詳解】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°﹣120°﹣120°﹣36°=84°,故答案為84°.本題考查了多邊形的內(nèi)角與外角,利用求多邊形的內(nèi)角得出正五邊形的內(nèi)角、正六邊形的內(nèi)角是解題關(guān)鍵.二、解答題(本大題共3個小題,共30分)24、(1)分式的值為1即分子為1且分母不為1.(2)分式方程無解.【解析】
(1)根據(jù)分式的值為1即分子為1且分母不為1可得;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年商業(yè)廣告燈箱安裝施工合同
- 2025年度大曰金地產(chǎn)樓盤銷售代理合同全案策劃執(zhí)行合同4篇
- 2025年私人住房買賣合同書含物業(yè)管理服務(wù)條款范本2篇
- 2025年度高端鈦礦資源批量采購合同
- 二零二五版鍋爐設(shè)備買賣合同附安全使用操作手冊3篇
- 2025年度醫(yī)療設(shè)備租賃合同擔(dān)保與維修保養(yǎng)服務(wù)范本4篇
- 二零二五年度屋頂防水隔熱一體化合同
- 2025年BEC商務(wù)英語專業(yè)課程研發(fā)與授權(quán)使用合同3篇
- 二零二五版智慧城市基礎(chǔ)設(shè)施用地租賃合同3篇
- 預(yù)應(yīng)力專項施工方案
- 三年級數(shù)學(xué)寒假作業(yè)每日一練30天
- 二年級數(shù)學(xué)上冊100道口算題大全 (每日一套共26套)
- 總住院醫(yī)師管理制度
- 八年級上冊歷史 第二單元 社會主義制度的建立與社會主義建設(shè)的探索
- DB31T 360-2020 住宅物業(yè)管理服務(wù)規(guī)范
- 園林綠化工程大樹移植施工方案
- 應(yīng)收賬款最高額質(zhì)押擔(dān)保合同模版
- 基于新型光彈性實驗技術(shù)的力學(xué)實驗教學(xué)方法探索
- 訴前車輛保全申請書(5篇)
- 醫(yī)院后勤保障管理組織架構(gòu)圖
- 課件:TTT職業(yè)培訓(xùn)師課程
評論
0/150
提交評論