




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆北京市西城區(qū)市級(jí)名校高三數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.2.函數(shù)的圖象的大致形狀是()A. B. C. D.3.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.4.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.105.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,6.把函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象.給出下列四個(gè)命題①的值域?yàn)棰诘囊粋€(gè)對(duì)稱軸是③的一個(gè)對(duì)稱中心是④存在兩條互相垂直的切線其中正確的命題個(gè)數(shù)是()A.1 B.2 C.3 D.47.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.88.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.9.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.510.已知角的終邊經(jīng)過點(diǎn),則的值是A.1或 B.或 C.1或 D.或11.設(shè),均為非零的平面向量,則“存在負(fù)數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件12.設(shè)曲線在點(diǎn)處的切線方程為,則()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角所對(duì)的邊分別為,若,的面積為,則_______,_______.14.如圖,機(jī)器人亮亮沿著單位網(wǎng)格,從地移動(dòng)到地,每次只移動(dòng)一個(gè)單位長度,則亮亮從移動(dòng)到最近的走法共有____種.15.若,則_________.16.邊長為2的菱形中,與交于點(diǎn)O,E是線段的中點(diǎn),的延長線與相交于點(diǎn)F,若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點(diǎn).(1)求證:;(2)求二面角的大小.18.(12分)已知函數(shù),若的解集為.(1)求的值;(2)若正實(shí)數(shù),,滿足,求證:.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在上恒成立,求的取值范圍.20.(12分)已知橢圓:()的離心率為,且橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.過點(diǎn)的直線交橢圓于,兩點(diǎn),為坐標(biāo)原點(diǎn).(1)若直線過橢圓的上頂點(diǎn),求的面積;(2)若,分別為橢圓的左、右頂點(diǎn),直線,,的斜率分別為,,,求的值.21.(12分)已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.(1)求橢圓的方程;(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說明理由.22.(10分)選修4-5:不等式選講設(shè)函數(shù)f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長度型,屬于基礎(chǔ)題.2、B【解析】
根據(jù)函數(shù)奇偶性,可排除D;求得及,由導(dǎo)函數(shù)符號(hào)可判斷在上單調(diào)遞增,即可排除AC選項(xiàng).【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當(dāng)時(shí),;又當(dāng)時(shí),,故在上單調(diào)遞增,所以,綜上,時(shí),,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導(dǎo)函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.3、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.4、C【解析】
取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點(diǎn)睛】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時(shí)要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.5、B【解析】
根據(jù)二項(xiàng)分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)殡S機(jī)變量滿足,,.所以服從二項(xiàng)分布,由二項(xiàng)分布的性質(zhì)可得:,因?yàn)椋?,由二次函?shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點(diǎn)睛】本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.6、C【解析】
由圖象變換的原則可得,由可求得值域;利用代入檢驗(yàn)法判斷②③;對(duì)求導(dǎo),并得到導(dǎo)函數(shù)的值域,即可判斷④.【詳解】由題,,則向右平移個(gè)單位可得,,的值域?yàn)?①錯(cuò)誤;當(dāng)時(shí),,所以是函數(shù)的一條對(duì)稱軸,②正確;當(dāng)時(shí),,所以的一個(gè)對(duì)稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個(gè).故選:C【點(diǎn)睛】本題考查三角函數(shù)的圖像變換,考查代入檢驗(yàn)法判斷余弦型函數(shù)的對(duì)稱軸和對(duì)稱中心,考查導(dǎo)函數(shù)的幾何意義的應(yīng)用.7、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.8、D【解析】
由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.9、B【解析】
還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點(diǎn)睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計(jì)算能力,屬于中檔題.10、B【解析】
根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點(diǎn)與原點(diǎn)間的距離.①當(dāng)時(shí),,∴,∴.②當(dāng)時(shí),,∴,∴.綜上可得的值是或.故選B.【點(diǎn)睛】利用三角函數(shù)的定義求一個(gè)角的三角函數(shù)值時(shí)需確定三個(gè)量:角的終邊上任意一個(gè)異于原點(diǎn)的點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,該點(diǎn)到原點(diǎn)的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.11、B【解析】
根據(jù)充分條件、必要條件的定義進(jìn)行分析、判斷后可得結(jié)論.【詳解】因?yàn)?,均為非零的平面向量,存在?fù)數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當(dāng)向量,的夾角為鈍角時(shí),滿足,但此時(shí),不共線且反向,所以必要性不成立.所以“存在負(fù)數(shù),使得”是“”的充分不必要條件.故選B.【點(diǎn)睛】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時(shí)注意選擇恰當(dāng)?shù)姆椒ㄅ袛嗝}是否正確.12、D【解析】
利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因?yàn)?,且在點(diǎn)處的切線的斜率為3,所以,即.故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查運(yùn)算求解能力,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知及正弦定理,三角函數(shù)恒等變換的應(yīng)用可得,從而求得,結(jié)合范圍,即可得到答案運(yùn)用余弦定理和三角形面積公式,結(jié)合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點(diǎn)睛】本題主要考查了運(yùn)用正弦定理、余弦定理和面積公式解三角形,題目較為基礎(chǔ),只要按照題意運(yùn)用公式即可求出答案14、【解析】
分三步來考查,先從到,再從到,最后從到,分別計(jì)算出三個(gè)步驟中對(duì)應(yīng)的走法種數(shù),然后利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】分三步來考查:①從到,則亮亮要移動(dòng)兩步,一步是向右移動(dòng)一個(gè)單位,一步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;②從到,則亮亮要移動(dòng)六步,其中三步是向右移動(dòng)一個(gè)單位,三步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;③從到,由①可知有種走法.由分步乘法計(jì)數(shù)原理可知,共有種不同的走法.故答案為:.【點(diǎn)睛】本題考查格點(diǎn)問題的處理,考查分步乘法計(jì)數(shù)原理和組合計(jì)數(shù)原理的應(yīng)用,屬于中等題.15、【解析】
因?yàn)椋?因?yàn)?,所以,又,所以,所?.16、【解析】
取基向量,,然后根據(jù)三點(diǎn)共線以及向量加減法運(yùn)算法則將,表示為基向量后再相乘可得.【詳解】如圖:設(shè),又,且存在實(shí)數(shù)使得,,,,,,故答案為:.【點(diǎn)睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運(yùn)算,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結(jié)PD,由題意可得,則AB⊥平面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,計(jì)算可得其正切值為,故二面角的大小為;法二:以D為原點(diǎn)建立空間直角坐標(biāo)系,計(jì)算可得平面PBE的法向量.平面PAB的法向量為.據(jù)此計(jì)算可得二面角的大小為.試題解析:(1)連結(jié)PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).設(shè)平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量為.設(shè)二面角的大小為,由圖知,,所以即二面角的大小為.18、(1);(2)證明見詳解.【解析】
(1)將不等式的解集用表示出來,結(jié)合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),,,因?yàn)榈慕饧癁?,所以,;?)由(1)由柯西不等式,當(dāng)且僅當(dāng),,,等號(hào)成立.【點(diǎn)睛】本題考查了絕對(duì)值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.19、(1);(2)【解析】
(1),對(duì)函數(shù)求導(dǎo),分別求出和,即可求出在點(diǎn)處的切線方程;(2)對(duì)求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因?yàn)?所以,所以,則,故曲線在點(diǎn)處的切線方程為.(2)因?yàn)?所以,①當(dāng)時(shí),在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當(dāng)時(shí),令,解得,即在上單調(diào)遞減,則,故不符合題意;③當(dāng)時(shí),在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點(diǎn)睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.20、(1)(2)【解析】
(1)根據(jù)拋物線的焦點(diǎn)求得橢圓的焦點(diǎn),由此求得,結(jié)合橢圓離心率求得,進(jìn)而求得,從而求得橢圓的標(biāo)準(zhǔn)方程,求得橢圓上頂點(diǎn)的坐標(biāo),由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點(diǎn)的縱坐標(biāo),由此求得的面積.(2)求得兩點(diǎn)的坐標(biāo),設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,所以橢圓的右焦點(diǎn)的坐標(biāo)為,所以,因?yàn)闄E圓的離心率為,所以,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為.其上頂點(diǎn)為,所以直線:,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設(shè),.由題還可知,直線的斜率不為0,故可設(shè):.由,消去,得,所以所以,又因?yàn)辄c(diǎn)在橢圓上,所以,所以.【點(diǎn)睛】本小題主要考查拋物線的焦點(diǎn),橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線與橢圓,三角形的面積等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.21、(1);(2)存在,且方程為或.【解析】
(1)依題意列出關(guān)于a,b,c的方程組,求得a,b,進(jìn)而可得到橢圓方程;(2)聯(lián)立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點(diǎn),則,結(jié)合韋達(dá)定理可得到參數(shù)值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當(dāng)斜率不存在時(shí),以為直徑的圓顯然不經(jīng)過橢圓的左頂點(diǎn),所以可設(shè)直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標(biāo)分別為,,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理系統(tǒng)開發(fā)合作協(xié)議
- 農(nóng)業(yè)科技推廣應(yīng)用案例分析
- 維修服務(wù)委托合同
- 金融產(chǎn)品開發(fā)合作協(xié)議
- 旅游行業(yè)游客安全與責(zé)任免除合同
- 學(xué)生自制動(dòng)漫電影小感悟
- 昆蟲記的讀后感
- 食品營養(yǎng)與健康功能性食品知識(shí)點(diǎn)題集
- 寵物行業(yè)智能門店與健康管理方案
- 市場(chǎng)營銷策略效果評(píng)估表格模板(行業(yè)A)
- 四川政采評(píng)審專家入庫考試基礎(chǔ)題復(fù)習(xí)測(cè)試卷附答案
- 2024解析:第十二章滑輪-基礎(chǔ)練(解析版)
- 《社會(huì)應(yīng)急力量建設(shè)基礎(chǔ)規(guī)范 第2部分:建筑物倒塌搜救》知識(shí)培訓(xùn)
- 國有企業(yè)管理人員處分條例培訓(xùn)2024
- 浙江省寧波市2025屆高三上學(xué)期一??荚嚁?shù)學(xué)試卷 含解析
- 代理記賬業(yè)務(wù)內(nèi)部規(guī)范(三篇)
- 腰椎間盤突出癥課件(共100張課件)
- 委托調(diào)解民事糾紛協(xié)議書合同
- 中醫(yī)四季養(yǎng)生之道課件
- 消防安全教育主題班會(huì)課件
- 7.1.2 直觀圖的畫法-【中職專用】高一數(shù)學(xué)教材配套課件(高教版2021·基礎(chǔ)模塊下冊(cè))
評(píng)論
0/150
提交評(píng)論