版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省保山隆陽區(qū)高二數(shù)學第一學期期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某企業(yè)為節(jié)能減排,用萬元購進一臺新設備用于生產.第一年需運營費用萬元,從第二年起,每年運營費用均比上一年增加萬元,該設備每年生產的收入均為萬元.設該設備使用了年后,年平均盈利額達到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.2.圓與圓的位置關系是()A.內含 B.相交C.外切 D.外離3.復數(shù)的共軛復數(shù)的虛部為()A. B.C. D.4.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.5.如圖所示,正方體的棱長為2,以其所有面的中心為頂點的多面體的表面積為()A. B.C.8 D.126.已知拋物線:的焦點為F,準線l上有兩點A,B,若為等腰直角三角形且面積為8,則拋物線C的標準方程是()A. B.C.或 D.7.已知是和的等比中項,則圓錐曲線的離心率為()A. B.或2C. D.或8.在中,內角的對邊分別為,若,則角為A. B.C. D.9.橢圓的()A.焦點在x軸上,長軸長為2 B.焦點在y軸上,長軸長為2C.焦點在x軸上,長軸長為 D.焦點在y軸上,長軸長為10.已知數(shù)列的通項公式為,其前項和為,則滿足的的最小值為()A.30 B.31C.32 D.3311.已知點F是雙曲線的左焦點,點E是該雙曲線的右頂點,過F作垂直于x軸的直線與雙曲線交于G、H兩點,若是銳角三角形,則該雙曲線的離心率e的取值范圍是()A. B.C. D.12.如圖在中,,,在內作射線與邊交于點,則使得的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,且,若點在直線上,則______;______.14.若不等式的解集為,則________15.某次實驗得到如下7組數(shù)據(jù),通過判斷知道與具有線性相關性,其線性回歸方程為,則______.(參考公式:)12345676.06.26.36.46.46.76.816.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上下兩個焦點分別為,,過點與y軸垂直的直線交橢圓C于M,N兩點,△的面積為,橢圓C的離心率為(1)求橢圓C的標準方程;(2)已知O為坐標原點,直線與y軸交于點P,與橢圓C交于A,B兩個不同的點,若存在實數(shù),使得,求m的取值范圍18.(12分)已知拋物線的焦點為F,傾斜角為45°的直線m過點F,若此拋物線上存在3個不同的點到m的距離為,求此拋物線的準線方程19.(12分)已知點是橢圓E:一點,且橢圓的離心率為.(1)求此橢圓E方程;(2)設橢圓的左頂點為A,過點A向上作一射線交橢圓E于點B,以AB為邊作矩形ABCD,使得對邊CD經過橢圓中心O.(i)求矩形ABCD面積的最大值;(ii)問:矩形ABCD能否為正方形?若能,求出直線AB的方程;若不能,請說明理由.20.(12分)已知為數(shù)列的前項和,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和(3)設,若不等式對一切恒成立,求實數(shù)取值范圍21.(12分)設命題p:實數(shù)x滿足,其中;命題q:若,且為真,求實數(shù)x的取值范圍;若是的充分不必要條件,求實數(shù)m的取值范圍22.(10分)如圖,在四棱錐中,平面,底面為菱形,且,,分別為,的中點(Ⅰ)證明:平面;(Ⅱ)點在棱上,且,證明:平面
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設該設備第年的營運費為萬元,利用為等差數(shù)列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設該設備第年的營運費為萬元,則數(shù)列是以2為首項,2為公差的等差數(shù)列,則,則該設備使用年的營運費用總和為,設第n年的盈利總額為,則,故年平均盈利額為,因為,當且僅當時,等號成立,故當時,年平均盈利額取得最大值4.故選:D.【點睛】本題考查等差數(shù)列在實際問題中的應用,注意根據(jù)題設條件概括出數(shù)列的類型,另外用基本不等式求最值時注意檢驗等號成立的條件.2、C【解析】分別求出兩圓的圓心、半徑,再求出兩圓的圓心距即可判斷作答.【詳解】圓的圓心,半徑,圓,即的圓心,半徑,則,即有,所以圓與圓外切.故選:C3、B【解析】先根據(jù)復數(shù)除法與加法運算求解得,再求共軛復數(shù)及其虛部.【詳解】解:,所以其共軛復數(shù)為,其虛部為故選:B4、D【解析】經判斷點在圓內,與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內,連接,當時,弦長最短,,所以弦長,當過圓心時,最長等于直徑8,所以的取值范圍是故選:D5、B【解析】首先確定幾何體的空間結構特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個由8個全等的正三角形圍成的多面體,正三角形的邊長為:,正三角形邊上的一條高為:,所以一個正三角形的面積為:,所以多面體的表面積為:.故選:B6、C【解析】分或()兩種情況討論,由面積列方程即可求解【詳解】由題意得,當時,,解得;當或時,,解得,所以拋物線的方程是或.故選:C.7、B【解析】由等比中項的性質可得,分別計算曲線的離心率.【詳解】由是和的等比中項,可得,當時,曲線方程為,該曲線為焦點在軸上的橢圓,離心率,當時,曲線方程為,該曲線為焦點在軸上的雙曲線,離心率,故選:B.8、A【解析】因為,那么結合,所以cosA==,所以A=,故答案為A考點:正弦定理與余弦定理點評:本題主要考查正弦定理與余弦定理的基本應用,屬于中等題.9、B【解析】把橢圓方程化為標準方程可判斷焦點位置和求出長軸長.【詳解】橢圓化為標準方程為,所以,且,所以橢圓焦點在軸上,,長軸長為.故選:B.10、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C11、B【解析】根據(jù)是等腰三角形且為銳角三角形,得到,即,解得離心率范圍.【詳解】,當時,,,不妨取,,是等腰三角形且為銳角三角形,則,即,,即,,解得,故.故選:B.12、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質,將轉化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、①.;②.【解析】根據(jù)等差數(shù)列的定義,結合等差數(shù)列前項和公式、裂項相消法進行求解即可.【詳解】因為點在直線上,所以,所以數(shù)列是以,公差為的等差數(shù)列,所以;因為,所以,于是,故答案為:;14、11【解析】根據(jù)題意得到2與3是方程的兩個根,再根據(jù)兩根之和與兩根之積求出,進而求出答案.【詳解】由題意得:2與3是方程的兩個根,則,,所以.故答案為:1115、9##【解析】求得樣本中心點的坐標,代入回歸直線,即可求得.詳解】根據(jù)表格數(shù)據(jù)可得:故,解得.故答案為:.16、.【解析】利用空間向量夾角公式進行求解即可.【詳解】取CD的中點O,以O為原點,以CD所在直線為x軸,以底面內過點O且與CD垂直的直線為y軸,以過點O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標系設,則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或或.【解析】(1)根據(jù)已知條件,求得的方程組,解得,即可求得橢圓的方程;(2)對的取值進行分類討論,當時,根據(jù)三點共線求得,聯(lián)立直線方程和橢圓方程,利用韋達定理,結合直線交橢圓兩點,代值計算即可求得結果.【小問1詳解】對橢圓,令,故可得,則,故,則,又,,故可得,則橢圓的方程為:.【小問2詳解】直線與y軸交于點P,故可得的坐標為,當時,則,由橢圓的對稱性可知:,故滿足題意;當時,因為三點共線,若存在實數(shù),使得,即,則,故可得.又直線與橢圓交于兩點,故聯(lián)立直線方程,與橢圓方程,可得:,則,即;設坐標為,則,又,即,故可得:,即,也即,代入韋達定理整理得:,即,當時,上式不成立,故可得,又,則,整理得:,解得,即或.綜上所述:的取值范圍是或或.【點睛】本題考察橢圓方程的求解,以及橢圓中范圍問題的處理;解決本題的關鍵一是要求得的取值,二是充分利用韋達定理以及直線和曲線相交,則聯(lián)立方程組后得到的一元二次方程的,屬綜合中檔題.18、【解析】設出直線m的方程,利用方程組聯(lián)立、一元二次方程根的判別式求出與直線m平行的拋物線的切線方程,結合平行線間距離公式進行求解即可.【詳解】拋物線的焦點坐標為:,設直線m為,設為與拋物線相切,聯(lián)立直線與拋物線方程,化簡整理可得,,則,解得,且,故兩平行線間的距離,解得,故所求的準線方程為19、(1);(2)(i);(ii).【解析】(1)根據(jù)給定條件列出關于a,b的方程組,解方程組代入得解.(2)(i)設直線AB方程,與橢圓方程聯(lián)立求出線段AB長,再求出原點O到直線AB距離列出矩形面積求解即可;(ii)由(i)及列出方程,由方程解的情況即可判斷計算作答.【小問1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為:.【小問2詳解】(i)由(1)知,,設直線AB的斜率為,則直線AB的方程為:,由消去y并整理得:,點的橫坐標,則點的橫坐標有:,解得,則有,因矩形的邊CD過原點O,則,因此,矩形的面積,當且僅當,即時取“=”,所以矩形ABCD面積的最大值是.(ii)假定矩形ABCD能成為正方形,則,由(i)知:,整理得:,即,而,解得,所以矩形ABCD能成為正方形,此時,直線AB的方程為.【點睛】思路點睛:圓錐曲線中的最值問題,往往需要利用韋達定理構建目標的函數(shù)關系式,自變量可以斜率或點的橫、縱坐標等.而目標函數(shù)的最值可以通過二次函數(shù)或基本不等式或導數(shù)等求得.20、(1);(2);(3).【解析】(1)利用的關系,根據(jù)等比數(shù)列的定義求通項公式.(2)由(1)可得,應用裂項相消法求.(3)應用錯位相減法求得,由題設有,討論為奇數(shù)、偶數(shù)求的取值范圍【小問1詳解】當時,,可得,當時,,可得,∴是首項、公比都為的等比數(shù)列,故.【小問2詳解】由(1),,∴.【小問3詳解】由題設,,∴,則,∴,由對一切恒成立,令,則,∴數(shù)列單調遞減,∴當為奇數(shù),恒成立且在上遞減,則,當為偶數(shù),恒成立且在上遞增,則,綜上,.21、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;寫出命題所對應的集合,命題p:,命題q:,由是的充分不必要條件,即p是q的充分不必要條件,則A是B的真子集,列不等式組可求解【詳解】解:(1)由,其中;解得,又,即,由得:,又為真,則,得:,故實數(shù)x的取值范圍為;由得:命題p:,命題q:,由是的充分不必要條件,即p是q的充分不必要條
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 語文丨金太陽百校聯(lián)考(25-71C)江蘇省2025屆高三10月聯(lián)考語文試卷及答案
- 山西省臨汾市翼城校2025屆高二上生物期末教學質量檢測模擬試題含解析
- 四川省成都實驗中學2025屆生物高三第一學期期末達標檢測試題含解析
- 2025屆內蒙古通遼市科左后旗甘旗卡第二高級中學數(shù)學高三第一學期期末綜合測試試題含解析
- 2025屆天津市新四區(qū)示范校生物高三第一學期期末考試試題含解析
- 河南省南陽市南陽市第一中學2025屆高三英語第一學期期末統(tǒng)考模擬試題含解析
- 2025屆湖北省武漢市漢南區(qū)職教中心高三數(shù)學第一學期期末經典模擬試題含解析
- 2025屆安徽省滁州市明光中學語文高三上期末檢測試題含解析
- 2024年預制箱梁勞務分包合同
- 上海華東師大三附中2025屆數(shù)學高一上期末教學質量檢測模擬試題含解析
- 2024年部編新改版語文小學一年級上冊期中考試檢測題(有答案)
- GB/T 44109-2024信息技術大數(shù)據(jù)數(shù)據(jù)治理實施指南
- 《扣件式鋼管腳手架安全技術規(guī)范》JGJ130-2023
- 形物代與名物代練習題2頁
- 打拔機施工長鋼護筒專項施工方案
- 畢業(yè)設計(論文)叉車液壓系統(tǒng)設計
- 研發(fā)項目立項管理流程總體思路.doc
- 榆林市第十二中學第二個五年發(fā)展規(guī)劃
- 廣西珍貴樹種發(fā)展規(guī)劃(2011~2020年)講解
- 盤縣紅果鎮(zhèn)上紙廠煤礦(技改)45萬ta項目環(huán)境影響評價報告書
- 李居明大師趣談十二生肖
評論
0/150
提交評論