安徽江南十校2024年高考總復習單元滾動測試卷高三數(shù)學試題_第1頁
安徽江南十校2024年高考總復習單元滾動測試卷高三數(shù)學試題_第2頁
安徽江南十校2024年高考總復習單元滾動測試卷高三數(shù)學試題_第3頁
安徽江南十校2024年高考總復習單元滾動測試卷高三數(shù)學試題_第4頁
安徽江南十校2024年高考總復習單元滾動測試卷高三數(shù)學試題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽江南十校2024年高考總復習單元滾動測試卷高三數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若,則a的取值范圍為()A. B. C. D.2.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.3.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.4.己知,,,則()A. B. C. D.5.若與互為共軛復數(shù),則()A.0 B.3 C.-1 D.46.雙曲線C:(,)的離心率是3,焦點到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.7.若直線與曲線相切,則()A.3 B. C.2 D.8.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.9.已知函數(shù),若,則下列不等關系正確的是()A. B.C. D.10.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.11.復數(shù)(i是虛數(shù)單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.世紀產生了著名的“”猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復這樣的運算,經過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,且滿足,則______14.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.15.曲線在點處的切線方程為______.16.函數(shù)(為自然對數(shù)的底數(shù),),若函數(shù)恰有個零點,則實數(shù)的取值范圍為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.18.(12分)已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關于原點的對稱點為,直線交于點.(1)求橢圓方程;(2)若直線與橢圓交于另一點,且,求點的坐標.19.(12分)設為坐標原點,動點在橢圓:上,該橢圓的左頂點到直線的距離為.(1)求橢圓的標準方程;(2)若橢圓外一點滿足,平行于軸,,動點在直線上,滿足.設過點且垂直的直線,試問直線是否過定點?若過定點,請寫出該定點,若不過定點請說明理由.20.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.21.(12分)已知函數(shù)(,)滿足下列3個條件中的2個條件:①函數(shù)的周期為;②是函數(shù)的對稱軸;③且在區(qū)間上單調.(Ⅰ)請指出這二個條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.22.(10分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

求出函數(shù)定義域,在定義域內確定函數(shù)的單調性,利用單調性解不等式.【詳解】由得,在時,是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點睛】本題考查函數(shù)的單調性,考查解函數(shù)不等式,解題關鍵是確定函數(shù)的單調性,解題時可先確定函數(shù)定義域,在定義域內求解.2、D【解析】

根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學生的運算能力,屬于中檔題.3、C【解析】

根據(jù)總有恒成立可構造函數(shù),求導后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導分析最大值即可.【詳解】由題,總有即恒成立.設,則的最大值小于等于0.又,若則,在上單調遞增,無最大值.若,則當時,,在上單調遞減,當時,,在上單調遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當時,,在遞減;當時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進而求導構造函數(shù)求解的最大值.屬于難題.4、B【解析】

先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.5、C【解析】

計算,由共軛復數(shù)的概念解得即可.【詳解】,又由共軛復數(shù)概念得:,.故選:C【點睛】本題主要考查了復數(shù)的運算,共軛復數(shù)的概念.6、A【解析】

根據(jù)焦點到漸近線的距離,可得,然后根據(jù),可得結果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A【點睛】本題考查雙曲線漸近線方程,以及之間的關系,識記常用的結論:焦點到漸近線的距離為,屬基礎題.7、A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.8、A【解析】

結合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結合等比數(shù)列前項和公式和對數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點睛】本題考查與“楊輝三角”有關的規(guī)律求解問題,邏輯推理,等比數(shù)列前項和公式應用,屬于中檔題9、B【解析】

利用函數(shù)的單調性得到的大小關系,再利用不等式的性質,即可得答案.【詳解】∵在R上單調遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調性、不等式性質的運用,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.10、A【解析】

函數(shù)的零點就是方程的解,設,方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數(shù)的零點.考查轉化與化歸思想,函數(shù)零點轉化為方程的解,方程的解再轉化為研究函數(shù)的性質,本題考查了學生分析問題解決問題的能力.11、B【解析】

利用復數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復數(shù)(i是虛數(shù)單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數(shù)的四則運算以及復數(shù)的幾何意義,屬于基礎題.12、C【解析】

列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對題目所給等式進行賦值,由此求得的表達式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項為1,公比為的等比數(shù)列,可得.【點睛】本小題主要考查已知求,考查等比數(shù)列前項和公式,屬于中檔題.14、0.18【解析】

根據(jù)表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.15、【解析】

對函數(shù)求導,得出在處的一階導數(shù)值,即得出所求切線的斜率,再運用直線的點斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點睛】本題考查運用函數(shù)的導函數(shù)求函數(shù)在切點處的切線方程,關鍵在于求出在切點處的導函數(shù)值就是切線的斜率,屬于基礎題.16、【解析】

令,則,恰有四個解.由判斷函數(shù)增減性,求出最小值,列出相應不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導數(shù)在函數(shù)當中的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】

(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當與軸垂直時,設直線的方程為:,與橢圓聯(lián)立求得的坐標,通過、斜率之積為列方程可得的值,進而可得的面積;當與軸不垂直時,設,,的方程為,與橢圓方程聯(lián)立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,,,橢圓方程為;(2)(?。┊斉c軸垂直時,設直線的方程為:代入得:,,,解得:,;(ⅱ)當與軸不垂直時,設,,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關系,考查韋達定理的應用,考查了學生的計算能力,是中檔題.18、(1);(2)或【解析】

(1)根據(jù)的周長為,結合離心率,求出,即可求出方程;(2)設,則,求出直線方程,若斜率不存在,求出坐標,直接驗證是否滿足題意,若斜率存在,求出其方程,與直線方程聯(lián)立,求出點坐標,根據(jù)和三點共線,將點坐標用表示,坐標代入橢圓方程,即可求解.【詳解】(1)因為橢圓的離心率為,的周長為6,設橢圓的焦距為,則解得,,,所以橢圓方程為.(2)設,則,且,所以的方程為①.若,則的方程為②,由對稱性不妨令點在軸上方,則,,聯(lián)立①,②解得即.的方程為,代入橢圓方程得,整理得,或,.,不符合條件.若,則的方程為,即③.聯(lián)立①,③可解得所以.因為,設所以,即.又因為位于軸異側,所以.因為三點共線,即應與共線,所以,即,所以,又,所以,解得,所以,所以點的坐標為或.【點睛】本題考查橢圓的標準方程以及應用、直線與橢圓的位置關系,考查分類討論思想和計算求解能力,屬于較難題.19、(1);(2)見解析【解析】

(1)根據(jù)點到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運算可得,即可證明.【詳解】(1)左頂點A的坐標為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標準方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y(tǒng)0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y02+2=6,由(1)可得F(,0),∴=(﹣x0,﹣2y0),∴?=(﹣x0,﹣2y0)(2,t)=6﹣2x0﹣2y0t=0,∴NF⊥OP,故過點N且垂直于OP的直線過橢圓C的右焦點F.【點睛】本題考查了橢圓方程的求法,直線和橢圓的關系,向量的運算,考查了運算求解能力和轉化與化歸能力,屬于中檔題.20、(1)證明見詳解;(2)【解析】

(1)取中點,根據(jù),利用線面垂直的判定定理,可得平面,最后可得結果.(2)利用建系,假設長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結果.【詳解】(1)取中點,連接,如圖由,所以由,平面所以平面,又平面所以(2)假設,由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標系,如圖設平面的一個法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論