新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第35講 數(shù)列的求和(原卷版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第35講 數(shù)列的求和(原卷版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第35講 數(shù)列的求和(原卷版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第35講 數(shù)列的求和(原卷版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第35講 數(shù)列的求和(原卷版)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第35講數(shù)列求和【基礎(chǔ)知識(shí)全通關(guān)】1.等差數(shù)列的前n項(xiàng)和首項(xiàng)為SKIPIF1<0,末項(xiàng)為SKIPIF1<0,項(xiàng)數(shù)為n的等差數(shù)列SKIPIF1<0的前n項(xiàng)和公式:SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0是關(guān)于n的二次函數(shù),點(diǎn)SKIPIF1<0是SKIPIF1<0的圖象上一系列孤立的點(diǎn);SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0是關(guān)于n的一次函數(shù)SKIPIF1<0,即SKIPIF1<0或常函數(shù)SKIPIF1<0,即SKIPIF1<0,點(diǎn)SKIPIF1<0是直線SKIPIF1<0上一系列孤立的點(diǎn).我們可以借助二次函數(shù)的圖象和性質(zhì)來研究等差數(shù)列的前n項(xiàng)和的相關(guān)問題.2.用前n項(xiàng)和公式法判定等差數(shù)列等差數(shù)列的前n項(xiàng)和公式與函數(shù)的關(guān)系給出了一種判斷數(shù)列是否為等差數(shù)列的方法:若數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,那么當(dāng)且僅當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列;當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0不是等差數(shù)列.3.等差數(shù)列的常用性質(zhì)由等差數(shù)列的定義可得公差為SKIPIF1<0的等差數(shù)列SKIPIF1<0具有如下性質(zhì):(1)通項(xiàng)公式的推廣:SKIPIF1<0,SKIPIF1<0.(2)若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.特別地,①若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0;②若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.③有窮等差數(shù)列中,與首末兩項(xiàng)等距離的兩項(xiàng)之和都相等,都等于首末兩項(xiàng)的和,即SKIPIF1<0(3)下標(biāo)成等差數(shù)列的項(xiàng)SKIPIF1<0組成以md為公差的等差數(shù)列.(4)數(shù)列SKIPIF1<0是常數(shù)SKIPIF1<0是公差為td的等差數(shù)列.(5)若數(shù)列SKIPIF1<0為等差數(shù)列,則數(shù)列SKIPIF1<0SKIPIF1<0是常數(shù)SKIPIF1<0仍為等差數(shù)列.(6)若SKIPIF1<0,則SKIPIF1<0.4.與等差數(shù)列各項(xiàng)的和有關(guān)的性質(zhì)利用等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式易得等差數(shù)列的前n項(xiàng)和具有如下性質(zhì):設(shè)等差數(shù)列SKIPIF1<0(公差為d)和SKIPIF1<0的前n項(xiàng)和分別為SKIPIF1<0,(1)數(shù)列SKIPIF1<0是等差數(shù)列,首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0.(2)SKIPIF1<0構(gòu)成公差為SKIPIF1<0的等差數(shù)列.(3)若數(shù)列SKIPIF1<0共有SKIPIF1<0項(xiàng),則SKIPIF1<0,SKIPIF1<0.(4)若數(shù)列SKIPIF1<0共有SKIPIF1<0項(xiàng),則SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(5)SKIPIF1<0,SKIPIF1<0.5.等比數(shù)列的前n項(xiàng)和公式首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和的公式為SKIPIF1<0(1)當(dāng)公比SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,所以SKIPIF1<0是關(guān)于n的正比例函數(shù),則數(shù)列SKIPIF1<0的圖象是正比例函數(shù)SKIPIF1<0圖象上的一群孤立的點(diǎn).(2)當(dāng)公比SKIPIF1<0時(shí),等比數(shù)列的前SKIPIF1<0項(xiàng)和公式是SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則上式可寫成SKIPIF1<0的形式,則數(shù)列SKIPIF1<0的圖象是函數(shù)SKIPIF1<0圖象上的一群孤立的點(diǎn).由此可見,非常數(shù)列的等比數(shù)列的前n項(xiàng)和SKIPIF1<0是一個(gè)關(guān)于n的指數(shù)型函數(shù)與一個(gè)常數(shù)的和,且指數(shù)型函數(shù)的系數(shù)與常數(shù)項(xiàng)互為相反數(shù).6、等比數(shù)列及其前n項(xiàng)和的性質(zhì)若數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,前n項(xiàng)和為SKIPIF1<0,則有如下性質(zhì):(1)若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0.推廣:SKIPIF1<0SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0.(2)若SKIPIF1<0成等差數(shù)列,則SKIPIF1<0成等比數(shù)列.(3)數(shù)列SKIPIF1<0仍是公比為SKIPIF1<0的等比數(shù)列;數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列;數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列;若數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,則數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列.(4)SKIPIF1<0成等比數(shù)列,公比為SKIPIF1<0.(5)連續(xù)相鄰SKIPIF1<0項(xiàng)的和(或積)構(gòu)成公比為SKIPIF1<0或SKIPIF1<0的等比數(shù)列.(6)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(7)SKIPIF1<0.(8)若項(xiàng)數(shù)為SKIPIF1<0,則SKIPIF1<0,若項(xiàng)數(shù)為SKIPIF1<0,則SKIPIF1<0.(9)當(dāng)SKIPIF1<0時(shí),連續(xù)SKIPIF1<0項(xiàng)的和(如SKIPIF1<0)仍組成等比數(shù)列(公比為SKIPIF1<0,SKIPIF1<0).注意:這里連續(xù)m項(xiàng)的和均非零.【考點(diǎn)研習(xí)一點(diǎn)通】考點(diǎn)一求解等差數(shù)列的通項(xiàng)及前n項(xiàng)和1.已知數(shù)列SKIPIF1<0中,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【變式1-1】已知SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項(xiàng)和,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.考點(diǎn)二數(shù)列SKIPIF1<0的前n項(xiàng)和的求解2.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.(1)請(qǐng)問數(shù)列SKIPIF1<0是否為等差數(shù)列?如果是,請(qǐng)證明;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和.【變式2-1】設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.考點(diǎn)三求解等比數(shù)列的通項(xiàng)及前n項(xiàng)和3.若等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<05,則SKIPIF1<0等于A.5 B.16C.17 D.25【變式3-1】已知等比數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),且SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0滿足:SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.考點(diǎn)四等比數(shù)列的性質(zhì)的應(yīng)用4.在等比數(shù)列SKIPIF1<0中,SKIPIF1<0是方程SKIPIF1<0的根,則SKIPIF1<0A.SKIPIF1<0B.2C.1D.SKIPIF1<0【變式4-1】已知等比數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_______.【考點(diǎn)易錯(cuò)】1.等差數(shù)列SKIPIF1<0的前30項(xiàng)之和為50,前50項(xiàng)之和為30,求SKIPIF1<0。2.設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和,且SKIPIF1<0.求證:數(shù)列SKIPIF1<0為等差數(shù)列.3.設(shè){an}是等差數(shù)列,證明以bn=SKIPIF1<0(n∈N*)為通項(xiàng)公式的數(shù)列{bn}是等差數(shù)列.4.等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求公差d的取值范圍;(2)n為何值時(shí),Sn最大,并說明理由。5.若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則稱數(shù)列SKIPIF1<0為“平方遞推數(shù)列”.已知數(shù)列SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,其中n為正整數(shù).(1)證明:數(shù)列SKIPIF1<0是“平方遞推數(shù)列”,且數(shù)列SKIPIF1<0為等比數(shù)列;(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為SKIPIF1<0,求SKIPIF1<0;(3)在(2)的條件下,記SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,求使SKIPIF1<0成立的n的最小值.6.若數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0滿足SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0是等比數(shù)列;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.7.已知等比數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和.【鞏固提升】1.SKIPIF1<0和SKIPIF1<0是兩個(gè)等差數(shù)列,其中SKIPIF1<0為常值,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.記數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論