2025屆湖南省寧遠(yuǎn)、江華兩縣高考仿真卷數(shù)學(xué)試卷含解析_第1頁
2025屆湖南省寧遠(yuǎn)、江華兩縣高考仿真卷數(shù)學(xué)試卷含解析_第2頁
2025屆湖南省寧遠(yuǎn)、江華兩縣高考仿真卷數(shù)學(xué)試卷含解析_第3頁
2025屆湖南省寧遠(yuǎn)、江華兩縣高考仿真卷數(shù)學(xué)試卷含解析_第4頁
2025屆湖南省寧遠(yuǎn)、江華兩縣高考仿真卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆湖南省寧遠(yuǎn)、江華兩縣高考仿真卷數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),關(guān)于的方程R)有四個相異的實(shí)數(shù)根,則的取值范圍是(

)A. B. C. D.2.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨(dú)成組,則不同的派遣方案共有()種A. B. C. D.3.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.4.若是定義域?yàn)榈钠婧瘮?shù),且,則A.的值域?yàn)?B.為周期函數(shù),且6為其一個周期C.的圖像關(guān)于對稱 D.函數(shù)的零點(diǎn)有無窮多個5.若數(shù)列滿足且,則使的的值為()A. B. C. D.6.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.7.設(shè),點(diǎn),,,,設(shè)對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.8.將函數(shù)向左平移個單位,得到的圖象,則滿足()A.圖象關(guān)于點(diǎn)對稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點(diǎn)對稱C.圖象關(guān)于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根9.已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.10.在正項(xiàng)等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.811.已知函數(shù),,若對任意的,存在實(shí)數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.512.函數(shù)的圖象在點(diǎn)處的切線為,則在軸上的截距為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)復(fù)數(shù)滿足,則_________.14.在中,角的平分線交于,,,則面積的最大值為__________.15.已知,那么______.16.已知,滿足,則的展開式中的系數(shù)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.18.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.19.(12分)已知橢圓的左焦點(diǎn)為F,上頂點(diǎn)為A,直線AF與直線垂直,垂足為B,且點(diǎn)A是線段BF的中點(diǎn).(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點(diǎn),P是橢圓C上位于第一象限的一點(diǎn),直線MP與直線交于點(diǎn)Q,且,求點(diǎn)P的坐標(biāo).20.(12分)已知拋物線的焦點(diǎn)為,點(diǎn),點(diǎn)為拋物線上的動點(diǎn).(1)若的最小值為,求實(shí)數(shù)的值;(2)設(shè)線段的中點(diǎn)為,其中為坐標(biāo)原點(diǎn),若,求的面積.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)把曲線向下平移個單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉淼谋兜玫角€(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線的距離的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】=,當(dāng)時時,單調(diào)遞減,時,單調(diào)遞增,且當(dāng),當(dāng),

當(dāng)時,恒成立,時,單調(diào)遞增且,方程R)有四個相異的實(shí)數(shù)根.令=則,,即.2、C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨(dú)成一組的情況,再將這兩組分配,利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,

又因?yàn)槊刹坎荒軉为?dú)成一組,則不同的派遣方案種數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.3、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.4、D【解析】

運(yùn)用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域?yàn)榈钠婧瘮?shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點(diǎn)有無窮多個;因?yàn)椋?,令,則,即,所以的圖象關(guān)于對稱,由題意無法求出的值域,所以本題答案為D.【點(diǎn)睛】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運(yùn)用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.5、C【解析】因?yàn)?,所以是等差?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.6、A【解析】

根據(jù)復(fù)數(shù)的基本運(yùn)算求解即可.【詳解】.故選:A【點(diǎn)睛】本題主要考查了復(fù)數(shù)的基本運(yùn)算,屬于基礎(chǔ)題.7、A【解析】

先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.8、C【解析】

由輔助角公式化簡三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項(xiàng).【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質(zhì)可知,的對稱中心滿足,解得,所以A、B選項(xiàng)中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關(guān)于直線對稱;當(dāng)時,,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當(dāng),,由正弦函數(shù)的圖象與性質(zhì)可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點(diǎn)睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.9、B【解析】

根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長方體,于是得到三棱錐的外接球即為長方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個頂點(diǎn)位于長方體的四個頂點(diǎn),即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時,三棱錐外接球的表面積取得最小值為.故選B.【點(diǎn)睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構(gòu)造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.10、B【解析】

根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的計算,意在考查學(xué)生的計算能力.11、A【解析】

根據(jù)條件將問題轉(zhuǎn)化為,對于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進(jìn)一步得到的最大值.【詳解】,,對任意的,存在實(shí)數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設(shè),則,令,在恒成立,,故存在,使得,即,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.,將代入得:,,且,故選:A【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點(diǎn)存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.12、A【解析】

求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點(diǎn)的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

利用復(fù)數(shù)的運(yùn)算法則首先可得出,再根據(jù)共軛復(fù)數(shù)的概念可得結(jié)果.【詳解】∵復(fù)數(shù)滿足,∴,∴,故而可得,故答案為.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則,共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.14、15【解析】

由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因?yàn)?,,由角平分線定理得,設(shè),則由余弦定理得:即當(dāng)且僅當(dāng),即時取等號所以面積的最大值為15故答案為:15【點(diǎn)睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.15、【解析】

由已知利用誘導(dǎo)公式可求,進(jìn)而根據(jù)同角三角函數(shù)基本關(guān)系即可求解.【詳解】∵,∴,,∴.故答案為:.【點(diǎn)睛】本小題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.16、1【解析】

根據(jù)二項(xiàng)式定理求出,然后再由二項(xiàng)式定理或多項(xiàng)式的乘法法則結(jié)合組合的知識求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理的應(yīng)用是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)【解析】

(1)如圖,作,交于,連接.因?yàn)椋允堑娜确贮c(diǎn),可得.因?yàn)?,,,所以,因?yàn)?,所以,因?yàn)?,所以,所以,因?yàn)?,所以,所以,因?yàn)槠矫?,平面,所以平?又,平面,平面,所以平面.因?yàn)?,、平面,所以平面平面,所以平?(2)因?yàn)槭堑冗吶切?,,所?又因?yàn)?,,所以,所?又,平面,,所以平面.因?yàn)槠矫?,所以平面平?在平面內(nèi)作平面.以B點(diǎn)為坐標(biāo)原點(diǎn),分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,則,,,所以,,,.設(shè)為平面的法向量,則,即,令,可得.設(shè)為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.18、(1)(2)【解析】

(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點(diǎn)睛】本題考查正弦定理以及余弦定理的應(yīng)用,三角形的面積公式,也考查計算能力,屬于基礎(chǔ)題.19、(I).(II)【解析】

(I)寫出坐標(biāo),利用直線與直線垂直,得到.求出點(diǎn)的坐標(biāo)代入,可得到的一個關(guān)系式,由此求得和的值,進(jìn)而求得橢圓方程.(II)設(shè)出點(diǎn)的坐標(biāo),由此寫出直線的方程,從而求得點(diǎn)的坐標(biāo),代入,化簡可求得點(diǎn)的坐標(biāo).【詳解】(I)∵橢圓的左焦點(diǎn),上頂點(diǎn),直線AF與直線垂直∴直線AF的斜率,即①又點(diǎn)A是線段BF的中點(diǎn)∴點(diǎn)的坐標(biāo)為又點(diǎn)在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設(shè)由(I)易得頂點(diǎn)M、N的坐標(biāo)為∴直線MP的方程是:由得:又點(diǎn)P在橢圓上,故∴∴∴或(舍)∴∴點(diǎn)P的坐標(biāo)為【點(diǎn)睛】本小題主要考查直線和圓錐曲線的位置關(guān)系,考查兩直線垂直的條件,考查向量數(shù)量積的運(yùn)算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標(biāo)、所敘述的直線是怎么得到的,向量的數(shù)量積對應(yīng)的坐標(biāo)都有哪一些,應(yīng)該怎么得到,這些在讀題的時候需要分析清楚.20、(1)的值為或.(2)【解析】

(1)分類討論,當(dāng)時,線段與拋物線沒有公共點(diǎn),設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,當(dāng)三點(diǎn)共線時,能取得最小值,利用拋物線的焦半徑公式即可求解;當(dāng)時,線段與拋物線有公共點(diǎn),利用兩點(diǎn)間的距離公式即可求解.(2)由題意可得軸且設(shè),則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,,若線段與拋物線沒有公共點(diǎn),即時,設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)共線時,的最小值為,此時若線段與拋物線有公共點(diǎn),即時,則三點(diǎn)共線時,的最小值為:,此時綜上,實(shí)數(shù)的值為或.因?yàn)?,所以軸且設(shè),則,代入拋物線的方程解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論