白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實(shí)踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實(shí)踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實(shí)踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實(shí)踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實(shí)踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁白銀礦冶職業(yè)技術(shù)學(xué)院

《深度學(xué)習(xí)實(shí)踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、欠擬合也是機(jī)器學(xué)習(xí)中需要關(guān)注的問題。以下關(guān)于欠擬合的說法中,錯(cuò)誤的是:欠擬合是指模型在訓(xùn)練數(shù)據(jù)和測(cè)試數(shù)據(jù)上的表現(xiàn)都不佳。欠擬合的原因可能是模型過于簡(jiǎn)單或者數(shù)據(jù)特征不足。那么,下列關(guān)于欠擬合的說法錯(cuò)誤的是()A.增加模型的復(fù)雜度可以緩解欠擬合問題B.收集更多的特征數(shù)據(jù)可以緩解欠擬合問題C.欠擬合問題比過擬合問題更容易解決D.欠擬合只在小樣本數(shù)據(jù)集上出現(xiàn),大規(guī)模數(shù)據(jù)集不會(huì)出現(xiàn)欠擬合問題2、假設(shè)正在進(jìn)行一個(gè)目標(biāo)檢測(cè)任務(wù),例如在圖像中檢測(cè)出人物和車輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測(cè)中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測(cè)3、在進(jìn)行特征工程時(shí),需要對(duì)連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化4、機(jī)器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法錯(cuò)誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個(gè)詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源D.機(jī)器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展5、在機(jī)器學(xué)習(xí)中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通??梢允褂媒徊骝?yàn)證技術(shù)來評(píng)估不同模型和超參數(shù)組合的性能。假設(shè)有一個(gè)分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗(yàn)證,以下關(guān)于K的選擇,哪一項(xiàng)是不太合理的?()A.K=5,平衡計(jì)算成本和評(píng)估準(zhǔn)確性B.K=2,快速得到初步的評(píng)估結(jié)果C.K=10,提供更可靠的評(píng)估D.K=n(n為樣本數(shù)量),確保每個(gè)樣本都用于驗(yàn)證一次6、在一個(gè)圖像生成的任務(wù)中,需要根據(jù)給定的描述或條件生成逼真的圖像。考慮到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過對(duì)抗訓(xùn)練生成逼真的圖像,但可能存在模式崩潰和訓(xùn)練不穩(wěn)定的問題B.變分自編碼器(VAE),能夠?qū)W習(xí)數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴(kuò)散模型,通過逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計(jì)算成本較高7、在進(jìn)行自動(dòng)特征工程時(shí),以下關(guān)于自動(dòng)特征工程方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動(dòng)提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動(dòng)特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動(dòng)特征工程需要大量的計(jì)算資源和時(shí)間,但可以提高特征工程的效率8、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測(cè)問題,數(shù)據(jù)具有季節(jié)性和趨勢(shì)性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以9、在集成學(xué)習(xí)中,Adaboost算法通過調(diào)整樣本的權(quán)重來訓(xùn)練多個(gè)弱分類器。如果一個(gè)樣本在之前的分類器中被錯(cuò)誤分類,它的權(quán)重會(huì)()A.保持不變B.減小C.增大D.隨機(jī)變化10、考慮一個(gè)情感分析任務(wù),判斷一段文本所表達(dá)的情感是積極、消極還是中性。在特征提取方面,可以使用詞袋模型、TF-IDF等方法。如果文本數(shù)據(jù)量較大,且包含豐富的語義信息,以下哪種特征提取方法可能表現(xiàn)更好?()A.詞袋模型,簡(jiǎn)單直觀,計(jì)算速度快B.TF-IDF,考慮了詞的頻率和文檔的分布C.基于深度學(xué)習(xí)的詞向量表示,能夠捕捉語義和上下文信息D.以上方法效果相同,取決于模型的復(fù)雜程度11、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于預(yù)測(cè)股票價(jià)格的機(jī)器學(xué)習(xí)模型,需要考慮市場(chǎng)的動(dòng)態(tài)性和不確定性。以下哪種模型可能更適合處理這種復(fù)雜的時(shí)間序列數(shù)據(jù)?()A.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)結(jié)合注意力機(jī)制B.門控循環(huán)單元(GRU)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合C.隨機(jī)森林與自回歸移動(dòng)平均模型(ARMA)的融合D.以上模型都有可能12、假設(shè)正在開發(fā)一個(gè)用于圖像識(shí)別的深度學(xué)習(xí)模型,需要選擇合適的超參數(shù)。以下哪種方法可以用于自動(dòng)搜索和優(yōu)化超參數(shù)?()A.隨機(jī)搜索B.網(wǎng)格搜索C.基于模型的超參數(shù)優(yōu)化D.以上方法都可以13、在機(jī)器學(xué)習(xí)中,模型的可解釋性也是一個(gè)重要的問題。以下關(guān)于模型可解釋性的說法中,錯(cuò)誤的是:模型的可解釋性是指能夠理解模型的決策過程和預(yù)測(cè)結(jié)果的能力??山忉屝詫?duì)于一些關(guān)鍵領(lǐng)域如醫(yī)療、金融等非常重要。那么,下列關(guān)于模型可解釋性的說法錯(cuò)誤的是()A.線性回歸模型具有較好的可解釋性,因?yàn)樗臎Q策過程可以用公式表示B.決策樹模型也具有一定的可解釋性,因?yàn)榭梢酝ㄟ^樹形結(jié)構(gòu)直觀地理解決策過程C.深度神經(jīng)網(wǎng)絡(luò)模型通常具有較低的可解釋性,因?yàn)槠錄Q策過程非常復(fù)雜D.模型的可解釋性和性能是相互矛盾的,提高可解釋性必然會(huì)降低性能14、假設(shè)我們正在訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)模型,發(fā)現(xiàn)模型在訓(xùn)練集上表現(xiàn)很好,但在測(cè)試集上表現(xiàn)不佳。這可能是由于以下哪種原因()A.訓(xùn)練數(shù)據(jù)量不足B.模型過于復(fù)雜,導(dǎo)致過擬合C.學(xué)習(xí)率設(shè)置過高D.以上原因都有可能15、在進(jìn)行聚類分析時(shí),有多種聚類算法可供選擇。假設(shè)我們要對(duì)一組客戶數(shù)據(jù)進(jìn)行細(xì)分,以發(fā)現(xiàn)不同的客戶群體。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法需要預(yù)先指定聚類的個(gè)數(shù)K,并通過迭代優(yōu)化來確定聚類中心B.層次聚類算法通過不斷合并或分裂聚類來構(gòu)建聚類層次結(jié)構(gòu)C.密度聚類算法(DBSCAN)可以發(fā)現(xiàn)任意形狀的聚類,并且對(duì)噪聲數(shù)據(jù)不敏感D.所有的聚類算法都能保證得到的聚類結(jié)果是最優(yōu)的,不受初始條件和數(shù)據(jù)分布的影響16、在使用深度學(xué)習(xí)進(jìn)行圖像分類時(shí),數(shù)據(jù)增強(qiáng)是一種常用的技術(shù)。假設(shè)我們有一個(gè)有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強(qiáng)的描述,哪一項(xiàng)是不正確的?()A.可以通過隨機(jī)旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來增加數(shù)據(jù)的多樣性B.對(duì)圖像進(jìn)行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強(qiáng)的方法C.數(shù)據(jù)增強(qiáng)可以有效地防止模型過擬合,但會(huì)增加數(shù)據(jù)標(biāo)注的工作量D.過度的數(shù)據(jù)增強(qiáng)可能會(huì)導(dǎo)致模型學(xué)習(xí)到與圖像內(nèi)容無關(guān)的特征,影響模型性能17、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于醫(yī)療診斷的機(jī)器學(xué)習(xí)系統(tǒng),需要對(duì)疾病進(jìn)行預(yù)測(cè)。由于醫(yī)療數(shù)據(jù)的敏感性和重要性,模型的可解釋性至關(guān)重要。以下哪種模型或方法在提供可解釋性方面具有優(yōu)勢(shì)?()A.深度學(xué)習(xí)模型B.決策樹C.集成學(xué)習(xí)模型D.強(qiáng)化學(xué)習(xí)模型18、在一個(gè)回歸問題中,如果數(shù)據(jù)存在多重共線性,以下哪種方法可以用于解決這個(gè)問題?()A.特征選擇B.正則化C.主成分回歸D.以上方法都可以19、在分類問題中,如果正負(fù)樣本比例嚴(yán)重失衡,以下哪種評(píng)價(jià)指標(biāo)更合適?()A.準(zhǔn)確率B.召回率C.F1值D.均方誤差20、假設(shè)正在開發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對(duì)模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法21、在一個(gè)異常檢測(cè)的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點(diǎn)。以下哪種異常檢測(cè)算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點(diǎn),但對(duì)參數(shù)敏感B.一類支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對(duì)數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類的異常檢測(cè),將遠(yuǎn)離聚類中心的點(diǎn)視為異常,但聚類效果對(duì)結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的方法或進(jìn)行組合22、假設(shè)正在開發(fā)一個(gè)智能推薦系統(tǒng),用于向用戶推薦個(gè)性化的商品。系統(tǒng)需要根據(jù)用戶的歷史購買記錄、瀏覽行為、搜索關(guān)鍵詞等信息來預(yù)測(cè)用戶的興趣和需求。在這個(gè)過程中,特征工程起到了關(guān)鍵作用。如果要將用戶的購買記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計(jì)用戶購買每種商品的頻率B.對(duì)用戶購買的商品進(jìn)行分類,并計(jì)算各類別的比例C.直接將用戶購買的商品名稱作為特征輸入模型D.計(jì)算用戶購買商品的時(shí)間間隔和購買周期23、在一個(gè)分類問題中,如果數(shù)據(jù)分布不均衡,以下哪種方法可以用于處理這種情況?()A.過采樣B.欠采樣C.生成對(duì)抗網(wǎng)絡(luò)(GAN)生成新樣本D.以上方法都可以24、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以25、在一個(gè)客戶流失預(yù)測(cè)的問題中,需要根據(jù)客戶的消費(fèi)行為、服務(wù)使用情況等數(shù)據(jù)來提前預(yù)測(cè)哪些客戶可能會(huì)流失。以下哪種特征工程方法可能是最有幫助的?()A.手動(dòng)選擇和構(gòu)建與客戶流失相關(guān)的特征,如消費(fèi)頻率、消費(fèi)金額的變化等,但可能忽略一些潛在的重要特征B.利用自動(dòng)特征選擇算法,如基于相關(guān)性或基于樹模型的特征重要性評(píng)估,但可能受到數(shù)據(jù)噪聲的影響C.進(jìn)行特征變換,如對(duì)數(shù)變換、標(biāo)準(zhǔn)化等,以改善數(shù)據(jù)分布和模型性能,但可能丟失原始數(shù)據(jù)的某些信息D.以上方法結(jié)合使用,綜合考慮數(shù)據(jù)特點(diǎn)和模型需求二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在旅游規(guī)劃中的路線推薦。2、(本題5分)解釋機(jī)器學(xué)習(xí)在酒店管理中的客戶滿意度預(yù)測(cè)。3、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行颶風(fēng)路徑預(yù)測(cè)。4、(本題5分)說明機(jī)器學(xué)習(xí)在口腔醫(yī)學(xué)中的診斷輔助。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)利用神經(jīng)退行性疾病相關(guān)數(shù)據(jù)研究疾病的發(fā)病機(jī)制和治療策略。2、(本題5分)使用支持向量機(jī)(SVM)對(duì)圖像進(jìn)行分類,例如區(qū)分貓和狗的圖片。3、(本題5分)依據(jù)水產(chǎn)養(yǎng)殖數(shù)據(jù)優(yōu)化養(yǎng)殖環(huán)境和提高養(yǎng)殖效益

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論