高二數(shù)學(xué)導(dǎo)數(shù)運算法則.ppt_第1頁
高二數(shù)學(xué)導(dǎo)數(shù)運算法則.ppt_第2頁
高二數(shù)學(xué)導(dǎo)數(shù)運算法則.ppt_第3頁
高二數(shù)學(xué)導(dǎo)數(shù)運算法則.ppt_第4頁
高二數(shù)學(xué)導(dǎo)數(shù)運算法則.ppt_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、學(xué)校:福建省長泰一中,新人教版選修1-1全套課件,3.2.2導(dǎo)數(shù)運算法則,教學(xué)目標(biāo),熟練運用導(dǎo)數(shù)的四則運算法則,并能靈活運用 教學(xué)重點:熟練運用導(dǎo)數(shù)的四則運算法則 教學(xué)難點:商的導(dǎo)數(shù)的運用,我們今后可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式,導(dǎo)數(shù)的運算法則:,法則1:兩個函數(shù)的和(差)的導(dǎo)數(shù),等于這兩個函數(shù)的導(dǎo)數(shù)的 和(差),即:,法則2:兩個函數(shù)的積的導(dǎo)數(shù),等于第一個函數(shù)的導(dǎo)數(shù)乘第二個函數(shù),加上第一個函數(shù)乘第二個函數(shù)的導(dǎo)數(shù) ,即:,法則3:兩個函數(shù)的積的導(dǎo)數(shù),等于第一個函數(shù)的導(dǎo)數(shù)乘第二個函數(shù),減去第一個函數(shù)乘第二個函數(shù)的導(dǎo)數(shù) ,再除以第二個函數(shù)的平方.即:,例2.求函數(shù)y=x3-2x+3的導(dǎo)數(shù).,

2、練習(xí): P92 1、2,例4:求下列函數(shù)的導(dǎo)數(shù):,答案:,例5.某運動物體自始點起經(jīng)過t秒后的距離s滿足s= -4t3+16t2. (1)此物體什么時刻在始點? (2)什么時刻它的速度為零?,解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的時刻運動物體在 始點.,即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8,故在t=0,t=4和t=8秒時物體運動的速度為零.,例6.已知曲線S1:y=x2與S2:y=-(x-2)2,若直線l與S1,S2均 相切,求l的方程.,解:設(shè)l與S1相切于P(x1,x12),l與S2相切于Q(x2,-(x2-2)2).,對于 則與S1相切于P點的切線方程為y-x12 =2x1(x-x1),即y=2x1x-x12.,對于 與S2相切于Q點的切線方程為y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.,因為兩切線重合,若x1=0,x2=2,則l為y=0;若x1=2,x2=0,則l為y=4x-4.,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論