版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)梳理整合最新5篇 數(shù)學(xué)被很多同學(xué)認(rèn)為是一門很難的學(xué)科,高中數(shù)學(xué)更是如此,但是數(shù)學(xué)作為三大主課之一,所占的重量自是不清,很多同學(xué)也明白假如數(shù)學(xué)學(xué)不好的話想要考上抱負(fù)的高校是天方夜譚,但是苦于無(wú)學(xué)習(xí)之法,那么高中數(shù)學(xué)都有哪些學(xué)習(xí)方法呢?下面就是我給大家?guī)?lái)的高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié),期望能關(guān)懷到大家! 高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)1 1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征 (1)棱柱: 定義:有兩個(gè)面相互平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都相互平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母
2、,如五棱柱 幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。 (2)棱錐 定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等 表示:用各頂點(diǎn)字母,如五棱錐 幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相像,其相像比等于頂點(diǎn)到截面距離與高的比的平方。 (3)棱臺(tái): 定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等 表示:用各頂點(diǎn)字
3、母,如五棱臺(tái) 幾何特征:上下底面是相像的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn) (4)圓柱: 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體 幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面開(kāi)放圖是一個(gè)矩形。 (5)圓錐: 定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體 幾何特征:底面是一個(gè)圓;母線交于圓錐的頂點(diǎn);側(cè)面開(kāi)放圖是一個(gè)扇形。 (6)圓臺(tái): 定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征:上下底面是兩個(gè)圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面開(kāi)放圖是一個(gè)弓形。 (7)球體: 定義:以半圓的直
4、徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑。 2、空間幾何體的三視圖 定義三視圖:正視圖(光線從幾何體的前面對(duì)后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下) 注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度; 俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度; 側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。 3、空間幾何體的直觀圖斜二測(cè)畫(huà)法 斜二測(cè)畫(huà)法特點(diǎn):原來(lái)與x軸平行的線段照舊與x平行且長(zhǎng)度不變;原來(lái)與y軸平行的線段照舊與y平行,長(zhǎng)度為原來(lái)的一半。 高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)2
5、函數(shù)的奇偶性 1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),假如對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)). 正確理解奇函數(shù)和偶函數(shù)的定義,要留意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)). 2、奇偶函數(shù)的定義是推斷函數(shù)奇偶性的主要依據(jù)。為了便于推斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式: 留意如下結(jié)論的運(yùn)用: (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)
6、總是偶函數(shù); (2)f(x)、g(x)分別是定義域d1、d2上的奇函數(shù),那么在d1d2上,f(x)+g(x)是奇函數(shù),f(x)g(x)是偶函數(shù),類似地有“奇奇=奇”“奇奇=偶”,“偶偶=偶”“偶偶=偶”“奇偶=奇”; (3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù); (4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。 3、有關(guān)奇偶性的幾共性質(zhì)及結(jié)論 (1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱;一個(gè)函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱. (2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù). (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立
7、. (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱區(qū)間上的單調(diào)性是相同(反)的。 (5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)=f(x)+f(-x)是偶函數(shù),g(x)=f(x)-f(-x)是奇函數(shù). (6)奇偶性的推廣 函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對(duì)稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對(duì)定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱圖形,即y=f(a+x)為奇函數(shù)。 高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)3 方程的根與函數(shù)的零點(diǎn) 1、函數(shù)零點(diǎn)的概念:對(duì)于函
8、數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn). 3、函數(shù)零點(diǎn)的求法: (1)(代數(shù)法)求方程的實(shí)數(shù)根; (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn). 4、二次函數(shù)的零點(diǎn): (1)0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn). (2)=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn). (3)0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).
9、 高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)4 1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊狀況,不要遺忘了借助數(shù)軸和文氏圖進(jìn)行求解. 2.在應(yīng)用條件時(shí),易a忽視是空集的狀況 3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎? 4.簡(jiǎn)潔命題與復(fù)合命題有什么區(qū)分?四種命題之間的相互關(guān)系是什么?如何推斷充分與必要條件? 5.你知道“否命題”與“命題的否定形式”的區(qū)分. 6.求解與函數(shù)有關(guān)的問(wèn)題易忽視定義域優(yōu)先的原則. 7.推斷函數(shù)奇偶性時(shí),易忽視檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱. 8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽視標(biāo)注該函數(shù)的定義域. 9.原函數(shù)在區(qū)間-a,a上單調(diào)遞增,則確定存在反函數(shù),且反函數(shù)也單調(diào)遞增;
10、但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不愿定單調(diào).例如:. 10.你嫻熟地把握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法 11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“”和“或”;單調(diào)區(qū)間不能用集合或不等式表示. 12.求函數(shù)的值域必需先求函數(shù)的定義域。 13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?比較函數(shù)值的大小;解抽象函數(shù)不等式;求參數(shù)的范圍(恒成立問(wèn)題).這幾種基本應(yīng)用你把握了嗎? 14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你留意到真數(shù)與底數(shù)的限制條件了嗎? (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需爭(zhēng)辯 15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用把握了嗎?如何利用二次函數(shù)求最值?
11、 16.用換元法解題時(shí)易忽視換元前后的等價(jià)性,易忽視參數(shù)的范圍。 17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否留意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒(méi)有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形? 18.利用均值不等式求最值時(shí),你是否留意到:“一正;二定;三等”. 19.確定值不等式的解法及其幾何意義是什么? 20.解分式不等式應(yīng)留意什么問(wèn)題?用“根軸法”解整式(分式)不等式的留意事項(xiàng)是什么? 21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤?,函?shù)的單調(diào)性為基礎(chǔ),分類爭(zhēng)辯是關(guān)鍵”,留意解完之后要寫(xiě)上:“綜上,原不等式的解集是”. 22.在求不等式的解集
12、、定義域及值域時(shí),其結(jié)果確定要用集合或區(qū)間表示;不能用不等式表示. 23.兩個(gè)不等式相乘時(shí),必需留意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要留意“同號(hào)可倒”即ab0,a0. 24.解決一些等比數(shù)列的前項(xiàng)和問(wèn)題,你留意到要對(duì)公比及兩種狀況進(jìn)行爭(zhēng)辯了嗎? 25.在“已知,求”的問(wèn)題中,你在利用公式時(shí)留意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。 26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無(wú)窮數(shù)列的概念嗎?你知道無(wú)窮數(shù)列的前項(xiàng)和與全部項(xiàng)的和的不同嗎?什么樣的無(wú)窮等比數(shù)列的全部項(xiàng)的和必定存在? 27.數(shù)列單調(diào)性問(wèn)題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問(wèn)題?(數(shù)列是特殊函數(shù),但其定義域中的值
13、不是連續(xù)的。) 28.應(yīng)用數(shù)學(xué)歸納法一要留意步驟齊全,二要留意從到過(guò)程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來(lái)證明時(shí)也成立。 29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)分嗎? 30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎? 31.在解三角問(wèn)題時(shí),你留意到正切函數(shù)、余切函數(shù)的定義域了嗎?你留意到正弦函數(shù)、余弦函數(shù)的有界性了嗎? 32.你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化消逝特殊角.異角化同角,異名化同名,高次化低次) 33.反正弦、
14、反余弦、反正切函數(shù)的取值范圍分別是 34.你還記得某些特殊角的三角函數(shù)值嗎? 35.把握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會(huì)寫(xiě)三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫(xiě)簡(jiǎn)潔的三角不等式的解集嗎?(要留意數(shù)形結(jié)合與書(shū)寫(xiě)規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過(guò)怎樣的變換得到嗎? 36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混: (1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個(gè)單位且下移3個(gè)單位得到的圖象的解析式為,即. (2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個(gè)個(gè)單位且下移3個(gè)單位得到的圖象的解析式為,即. (3)點(diǎn)的平移公式:點(diǎn)按向量平移
15、到點(diǎn),則. 37.在三角函數(shù)中求一個(gè)角時(shí),留意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍) 38.形如的周期都是,但的周期為。 39.正弦定理時(shí)易忘比值還等于2r. 高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)5 【一】 對(duì)數(shù)函數(shù) 對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。 右圖給出對(duì)于不同大小a所表示的函數(shù)圖形: 可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,由于它們互為反函數(shù)。 (1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。 (2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。 (3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。 (4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。 (5)明顯對(duì)數(shù)函數(shù)。 【二】 指數(shù)函數(shù) (1)指數(shù)函數(shù)的定義域?yàn)槿繉?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的狀況,則必定使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。 (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。 (3)函數(shù)圖形
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年春季課堂:《贈(zèng)劉景文》課件的運(yùn)用分享
- 面向2024年的工程制圖教案編寫(xiě)策略
- 2024琥珀課件:時(shí)間的膠囊生命的瞬間
- 2024年糖尿病護(hù)理:糖尿病足的預(yù)防與治療
- 教育學(xué)基礎(chǔ)知識(shí)試題
- 辦公自動(dòng)化教案首頁(yè):2024年新體驗(yàn)
- 2023-2024屆高考專題復(fù)習(xí)文言文閱讀之文言虛詞(則、乃、且)(含答案)
- 高中數(shù)學(xué)教學(xué)之德育滲透
- 氧化還原反應(yīng)配平方法與練習(xí)
- 2025屆高考英語(yǔ)二輪創(chuàng)新復(fù)習(xí)專題一第三節(jié)主旨大意題練習(xí)含解析
- 國(guó)際私法期末復(fù)習(xí)題及答案
- 化學(xué)品管理的消防安全
- 康復(fù)科科室規(guī)劃建設(shè)
- C40混凝土配合比設(shè)計(jì)書(shū)-完成
- 物業(yè)管家培訓(xùn)課件
- 中醫(yī)養(yǎng)生學(xué)教學(xué)大綱
- 郵政安全生產(chǎn)消防培訓(xùn)課件
- NB-T 47013.1-2015 承壓設(shè)備無(wú)損檢測(cè) 第1部分-通用要求
- 煤礦安全生產(chǎn)信息化建設(shè)
- 店鋪包工包料裝修合同范本
- 房屋拆遷實(shí)施方案
評(píng)論
0/150
提交評(píng)論