版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、函數(shù)與方程函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程憶憶 一一 憶憶 知知 識識 要要 點點0 0 零點零點 x 軸軸 高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程憶憶 一一 憶憶 知知 識識 要要 點點210高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程憶憶 一一 憶憶 知知 識識 要要 點點高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程 高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程 高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210
2、函數(shù)與方程函數(shù)零點個數(shù)的判斷函數(shù)零點個數(shù)的判斷 高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程7高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程二次函數(shù)的零點分布問題二次函數(shù)的零點分布問題高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程函數(shù)與方程函數(shù)與方程抽象函數(shù)抽象函數(shù)復(fù)合函數(shù)復(fù)合函數(shù)函數(shù)零點、二分法、一元二次方程根的分布函數(shù)零點、二分法、一元二次方程根的分布單調(diào)性:同增異減單調(diào)性:同增異減; 奇偶性:內(nèi)偶則偶,
3、內(nèi)奇同外奇偶性:內(nèi)偶則偶,內(nèi)奇同外賦值法賦值法函數(shù)的應(yīng)用函數(shù)的應(yīng)用函數(shù)的函數(shù)的基本性質(zhì)基本性質(zhì)單調(diào)性單調(diào)性奇偶性奇偶性周期性周期性對稱性對稱性1.求單調(diào)區(qū)間:定義法、導(dǎo)數(shù)法、用已知函數(shù)的單調(diào)性求單調(diào)區(qū)間:定義法、導(dǎo)數(shù)法、用已知函數(shù)的單調(diào)性.2.復(fù)合函數(shù)單調(diào)性:同增異減復(fù)合函數(shù)單調(diào)性:同增異減.1.先看定義域是否關(guān)于原點對稱,再看先看定義域是否關(guān)于原點對稱,再看f(- -x)=f(x)還是還是- -f(x).2.奇函數(shù)圖象關(guān)于原點對稱,若奇函數(shù)圖象關(guān)于原點對稱,若x=0有意義,則有意義,則f(0)=0.3.偶函數(shù)圖象關(guān)于偶函數(shù)圖象關(guān)于y軸對稱,反之也成立軸對稱,反之也成立.f (x+T)=f (
4、x);周期為;周期為T的奇函數(shù)有:的奇函數(shù)有: f (T)=f (T/2)= f (0)=0.函數(shù)的概念函數(shù)的概念定義定義列表法列表法解析法解析法圖象法圖象法表示表示三要素三要素觀察法、判別式法、分離常數(shù)法、觀察法、判別式法、分離常數(shù)法、單調(diào)性法、最值法、重要不等式、單調(diào)性法、最值法、重要不等式、三角法、圖象法、線性規(guī)劃等三角法、圖象法、線性規(guī)劃等定義域定義域?qū)?yīng)關(guān)系對應(yīng)關(guān)系值域值域函數(shù)常見的函數(shù)常見的幾種變換幾種變換平移變換、對稱變換、翻折變換、伸縮變換平移變換、對稱變換、翻折變換、伸縮變換.基本初等基本初等函數(shù)函數(shù)正正(反反)比例函數(shù)比例函數(shù);一次一次(二次二次)函數(shù)函數(shù);冪、指數(shù)、對數(shù)函
5、數(shù)冪、指數(shù)、對數(shù)函數(shù)函 數(shù)常見函數(shù)模型常見函數(shù)模型冪、指、對函數(shù)模型;冪、指、對函數(shù)模型;分段函數(shù);分段函數(shù);對勾函數(shù)模型對勾函數(shù)模型軸對稱:軸對稱:f (a- -x)=f(a+x); 中心對稱中心對稱: f (a- -x)+f(a+x)=2b 高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程第三步,計算第三步,計算_:若若_,則,則x1就是函數(shù)的零點;就是函數(shù)的零點;若若_,則令則令b=x1 (此時零點此時零點x0(a, x1);若若_,則令則令a=x1(此時零點此時零點x0(x1,b);第四步第四步: 判斷是否達(dá)到精確度判斷是否達(dá)到精確度 :即若:即若|a- -b| ,則則得到零點近似值得到零點近似值
6、a(或或b);否則重復(fù)第二、三、四步否則重復(fù)第二、三、四步. 第一步第一步: 確定區(qū)間確定區(qū)間a, b,驗證,驗證_, 給定精確度給定精確度 ;第二步第二步: 求區(qū)間求區(qū)間(a, b)的中點的中點x1; 1. 1. 用二分法求函數(shù)用二分法求函數(shù) f(x) 零點近似值的步驟零點近似值的步驟( )( )0f af b 1()f x1()0f x 1( )()0f af x 1()( )0f xf b 高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程選初始區(qū)間選初始區(qū)間取區(qū)間中點取區(qū)間中點中點函中點函數(shù)值為零數(shù)值為零結(jié)束結(jié)束 是是 定新區(qū)間定新區(qū)間否否區(qū)間長度區(qū)間長度小于精確度小于精確度否否是是2.2.二分法的
7、解題程序二分法的解題程序高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程 轉(zhuǎn)化轉(zhuǎn)化思思想想逼近逼近思思想想數(shù)學(xué)數(shù)學(xué)源于生活源于生活數(shù)學(xué)數(shù)學(xué)用于生活用于生活二分法二分法數(shù)形結(jié)合數(shù)形結(jié)合1.尋找解所在的區(qū)間尋找解所在的區(qū)間2.不斷二分解所在的區(qū)間不斷二分解所在的區(qū)間3.根據(jù)精確度得出近似解根據(jù)精確度得出近似解用二分法求用二分法求方程的近似解方程的近似解算法思想算法思想高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程 【解題回顧】【解題回顧】求函數(shù)的零點就是求相應(yīng)的求函數(shù)的零點就是求相應(yīng)的方程的根方程的根, ,一般可以借助求根公式或因式分解一般可以借助求根公式或因式分解等辦法等辦法, ,求出方程的根求出方程的根, ,從而得
8、到函數(shù)的零點從而得到函數(shù)的零點. .222,1,)( )2 ,(,1)xxf xxx x 259,82 例例1.設(shè)函數(shù)設(shè)函數(shù), ,則函數(shù)則函數(shù)1( )4f x 的零點是的零點是 . .題型一題型一 判斷的零點性質(zhì)應(yīng)用判斷的零點性質(zhì)應(yīng)用高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程方程的解有方程的解有_個個.22xx xyo3 【解題回顧】【解題回顧】當(dāng)判斷方程當(dāng)判斷方程 f (x) = g (x)的實根個數(shù)的實根個數(shù)時,我們可轉(zhuǎn)化為判斷函數(shù)時,我們可轉(zhuǎn)化為判斷函數(shù)y = f (x) 與函數(shù)與函數(shù) y = g (x)的圖像的交點的個數(shù)的圖像的交點的個數(shù)高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程1(,0)4 方程方程|x|(x- -1)- -k=0有三個不相等的實根有三個不相等的實根, 則則k的取值范圍是的取值范圍是 .【解題回顧】【解題回顧】本題研究方程本題研究方程根的個數(shù)問題根的個數(shù)問題,此類問題首選此類問題首選的方法是圖象法,即構(gòu)造函的方法是圖象法,即構(gòu)造函數(shù)利用函數(shù)圖象解題數(shù)利用函數(shù)圖象解題,高考數(shù)學(xué)一輪復(fù)習(xí)講義210函數(shù)與方程 (07山東山東)若函數(shù)若函數(shù)y=x2+mx+m+3有 兩 個 不 同 的 零 點 , 則 的 取 值 范 圍 是有 兩 個 不 同 的 零 點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 精準(zhǔn)醫(yī)療中心人員聘用合同模板
- 婚紗攝影店電梯銷售合同
- 冷藏租賃協(xié)議:化妝品冷藏專用
- 商業(yè)步行街?jǐn)偽蛔赓U協(xié)議
- 低碳環(huán)保項目施工合同
- 財務(wù)渠道拓展財務(wù)總監(jiān)招聘協(xié)議
- 博物館工程商品混凝土施工合同
- 玩具企業(yè)會計聘用合同
- 地下通道腳手架施工協(xié)議范本
- 服裝出口業(yè)務(wù)員招聘合同模板
- (打印)初一英語語法練習(xí)題(一)
- (正式版)JBT 3300-2024 平衡重式叉車 整機(jī)試驗方法
- 廣東省汕頭市金平區(qū)2023-2024學(xué)年七年級上學(xué)期期末語文試題
- 生態(tài)系統(tǒng)的信息傳遞說課稿-2023-2024學(xué)年高二上學(xué)期生物人教版選擇性必修二
- 2024年天津津誠國有資本投資運(yùn)營有限公司招聘筆試參考題庫含答案解析
- 2024年廣東珠海水務(wù)環(huán)境控股集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2024版國開電大??啤禘CEL在財務(wù)中的應(yīng)用》在線形考(形考作業(yè)一至四)試題及答案
- 英國文學(xué)史及選讀試題及答案
- 新國際政治學(xué)概論(第三版)-教學(xué)課件-陳岳-109503國際政治學(xué)概論(第三版)
- 知識產(chǎn)權(quán)維權(quán)授權(quán)書
- 焊接工藝優(yōu)化與提高焊接效率
評論
0/150
提交評論