![常微分方程第三版答案2.1_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/f8ec542f-3bc5-4942-9f47-a55425a1dc87/f8ec542f-3bc5-4942-9f47-a55425a1dc871.gif)
![常微分方程第三版答案2.1_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/f8ec542f-3bc5-4942-9f47-a55425a1dc87/f8ec542f-3bc5-4942-9f47-a55425a1dc872.gif)
![常微分方程第三版答案2.1_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/f8ec542f-3bc5-4942-9f47-a55425a1dc87/f8ec542f-3bc5-4942-9f47-a55425a1dc873.gif)
![常微分方程第三版答案2.1_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/f8ec542f-3bc5-4942-9f47-a55425a1dc87/f8ec542f-3bc5-4942-9f47-a55425a1dc874.gif)
![常微分方程第三版答案2.1_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/f8ec542f-3bc5-4942-9f47-a55425a1dc87/f8ec542f-3bc5-4942-9f47-a55425a1dc875.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、常微分方程習題2.11.,并求滿足初始條件:x=0,y=1的特解. 解:對原式進行變量分離得 并求滿足初始條件:x=0,y=1的特解.解:對原式進行變量分離得:3 解:原式可化為: 12解1516解: ,這是齊次方程,令17. 解:原方程化為 令方程組則有令當當另外 19. 已知f(x).解:設f(x)=y, 則原方程化為 兩邊求導得20.求具有性質 x(t+s)=的函數(shù)x(t),已知x(0)存在。解:令t=s=0 x(0)= 若x(0)0 得x=-1矛盾。所以x(0)=0. x(t)=) 兩邊積分得arctg x(t)=x(0)t+c 所以x(t)=tgx(0)t+c 當t=0時 x(0)=
2、0 故c=0 所以x(t)=tgx(0)t02411 黃罕鱗(41) 甘代祥(42)acknowledgements my deepest gratitude goes first and foremost to professor aaa , my supervisor, for her constant encouragement and guidance. she has walked me through all the stages of the writing of this thesis. without her consistent and illuminating instr
3、uction, this thesis could not havereached its present form. second, i would like to express my heartfelt gratitude to professor aaa, who led me into the world of translation. i am also greatly indebted to the professors and teachers at the department of english: professor dddd, professor ssss, who h
4、ave instructed and helped me a lot in the past two years. last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. i also owe my sincere gratitude to my friends and my fellow classmates who gave me their help and time in listeni
5、ng to me and helping me work out my problems during the difficult course of the thesis. my deepest gratitude goes first and foremost to professor aaa , my supervisor, for her constant encouragement and guidance. she has walked me through all the stages of the writing of this thesis. without her cons
6、istent and illuminating instruction, this thesis could not havereached its present form. second, i would like to express my heartfelt gratitude to professor aaa, who led me into the world of translation. i am also greatly indebted to the professors and teachers at the department of english: professo
7、r dddd, professor ssss, who have instructed and helped me a lot in the past two years. last my thanks would go to my beloved family for their loving considerations and great confidence in me all through these years. i also owe my sincere gratitude to my friends and my fellow classmates who gave me their h
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代農業(yè)裝備在種植業(yè)中的技術優(yōu)勢
- 現(xiàn)代醫(yī)療技術中的人才培養(yǎng)與團隊建設
- 校園文化與企業(yè)文化的對接與互鑒
- 14《母雞》說課稿-2023-2024學年統(tǒng)編版四年級語文下冊
- 24 《古人談讀書》說課稿-2024-2025學年語文五年級上冊統(tǒng)編版
- 6 傳統(tǒng)游戲我會玩2023-2024學年二年級下冊道德與法治同步說課稿(統(tǒng)編版)
- 14 圓明園的毀滅 說課稿-2024-2025學年語文五年級上冊統(tǒng)編版
- 5 樹和喜鵲(說課稿)-2023-2024學年統(tǒng)編版語文一年級下冊
- 17《爬天都峰》說課稿-2024-2025學年統(tǒng)編版語文四年級上冊
- 2023三年級英語下冊 Unit 4 Food and Restaurants Lesson 21 In the Restaurant說課稿 冀教版(三起)
- 中國儲備糧管理集團有限公司蘭州分公司招聘筆試真題2024
- 2024年廣東省公務員錄用考試《行測》真題及答案解析
- 骨科手術糾紛案例分析課件
- 2022年廣西高考英語真題及答案(全國甲卷)
- 安全生產責任清單(加油站)
- 動物檢疫技術-動物檢疫的程序(動物防疫與檢疫技術)
- 煤礦復工復產專項安全風險辨識
- DB42T 1049-2015房產測繪技術規(guī)程
- 《民航服務溝通技巧》教案第8課重要旅客服務溝通
- 學校副校長述職報告PPT模板下載
- (完整版)歐姆龍E3X-HD光纖放大器調試SOP
評論
0/150
提交評論