三角函數(shù)在實際中的應(yīng)用_第1頁
三角函數(shù)在實際中的應(yīng)用_第2頁
三角函數(shù)在實際中的應(yīng)用_第3頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、專題3銳角三角函數(shù)在實際中的應(yīng)用解題技巧:1 如果圖形不是直角三角形,一定要考慮添加適當(dāng)?shù)妮o助線作平行線或作垂線,構(gòu)造直角三角形,然后選擇恰當(dāng)?shù)娜呛瘮?shù)正弦、余弦或正切;2在求線段長度的時候,如果不能直接求出長度,可以考慮列方程求值。一仰角、俯角問題1 某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿的高度小亮站著測量,眼睛與地面的 距離AB 是1.7米,看旗桿頂部E的仰角為30小敏蹲著測量,眼睛與地面的距離CD 是0.7米,看旗桿頂部E的仰角為45兩人相距5米且位于旗桿同側(cè)點B、D、F在同 一直線上.1求小敏到旗桿的距離DF.結(jié)果保存根號2求旗桿EF的高度.結(jié)果保存整數(shù),參考數(shù)據(jù):2.如下圖,某古代文物

2、被探明埋于地下的A處,由于點A上方有一些管道,考古人員不能垂直向下挖掘,他們被允許從 B處或C處挖掘,從B處挖掘時,最短路線BA與地 面所成的銳角是56從C處挖掘時,最短路線CA與地面所成的銳角是30且BC=20m, 假設(shè)考古人員最終從B處挖掘,求挖掘的最短距離.參考數(shù)據(jù):sin56=0.83, tan56 1M8, 需勺.73,結(jié)果保存整數(shù)地面 B C3. 2021濰坊如圖,某海域有兩個海拔均為200米的海島A和海島B,一勘測飛機在距離海平面垂直高度為1100米的空中飛行,飛行到點C處時測得正前方一海島頂端A的俯角是45然后沿平行于AB的方向水平飛行1.99 K04米到達點D處,在D處測得正

3、前方另一海島頂端B的俯角是60求兩海島間的距離AB.4. 一電線桿PQ立在山坡上,從地面的點A看,測得桿頂端點A的仰角為45向前走6m 到達點B,又測得桿頂端點P和桿底端點Q的仰角分別為60和301求/BPQ的度數(shù);2求該電線桿PQ的高度.結(jié)果精確到1m5. 如圖,為了開發(fā)利用海洋資源,某勘測飛機測量一島嶼兩端A、B的距離,飛機以距海平面垂直同一高度飛行,在點 C處測得端點A的俯角為60然后沿著平行于AB的方向 水平飛行了 500米,在點D測得端點B的俯角為45島嶼兩端A、B的距離541.91 米,求飛機飛行的高度.結(jié)果精確到1米,參考數(shù)據(jù):0T73, VF.416. 2021丹東10分如圖,

4、線段AB , CD表示甲、乙兩幢居民樓的高, 兩樓間的距離 BD是60米.某 人站在A處測得C點的俯角為37 D點的俯角為48人的身高忽略不計,求乙樓的高度CD.參考數(shù)33711據(jù):sin37 tan37 手 sin48。點,tan48。汰5410107.如圖,一樓房AB后有一假山,其斜坡CD坡比為1:,山坡坡面上點E處有一休息 亭,測得假山坡腳C與樓房水平距離BC=6米,與亭子距離CE=20米,小麗從樓房頂測 得點E的俯角為45.1求點E距水平面BC的高度;2求樓房AB的高.結(jié)果精確到0.1米,參考數(shù)據(jù)JH.414,譏H.732&如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是

5、AF = 3700米,從飛機上觀測山頂目標(biāo)C的俯角是45飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標(biāo) C的俯角是50求這座山的高度 CD.參考數(shù)據(jù):sin50 0,7cos50 0Q4tan50 1.209. 2021?荊門如圖,在一次軍事演習(xí)中,藍方在一條東西走向的公路上的 A處朝正南 方向撤退,紅方在公路上的B處沿南偏西60 方向前進實施攔截,紅方行駛1000米到達C處后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45方向前進了相同的距離,剛D處到公路的距離結(jié)果不取近似值10. 2021?達州學(xué)習(xí) 利用三角函數(shù)測高后,某綜合實踐活動小組實地測量了鳳凰山與中心廣場的相對高度AB,其

6、測量步驟如下:1在中心廣場測點C處安置測傾器,測得此時山頂 A的仰角/ AFH=30 2在測點C與山腳B之間的D處安置測傾器C、D與B在同一直線上,且C、D之間的距離可以直接測得,測得此時山頂上紅軍亭頂部E的仰角/ EGH=453測得測傾器的高度CF=DG=1.5米,并測得CD之間的距離為288米;紅軍亭高度為12米,請根據(jù)測量數(shù)據(jù)求出鳳凰山與中心廣場的相對高度AB . J;取1.732,結(jié)果保存整數(shù)11. 2021?河南如下圖,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30朝大樹方向下坡走 6米到達坡底A處,在A處測得大樹頂端B的仰角 是48假設(shè)坡角

7、/ FAE=30 求大樹的高度結(jié)果保存整數(shù),參考數(shù)據(jù):sin48 0.74,cos48施7,tan48 何1,VV.7312. 2021?河南在中俄 海上聯(lián)合-2021反潛演習(xí)中,我軍艦A測得潛艇C的俯角為30位于軍艦A正上方1000米的反潛直升機B測得潛艇C的俯角為68試根據(jù)以上數(shù) 據(jù)求出潛艇C離開海平面的下潛深度.結(jié)果保存整數(shù),參考數(shù)據(jù):sin68 0.9,cos68 0.4,tan68 步,1.7)8ST面坡度、坡角問題13. 如圖,水壩的橫斷面是梯形,背水坡 AB的坡角/ BAE = 45 壩高BE = 20米.汛期來臨,為加大 水壩的防洪強度,將壩底從 A處向后水平延伸到 F處,使新

8、的背水坡 BF的坡角/ F = 30求AF的長度.結(jié)果精確到1米,參考數(shù)據(jù): 農(nóng)1.414 60= 66米;5 分在 Rt ACE 中,tan37 =,CE3那么 AE = tan37 CE冷00= 45米,8 分 CD = BE= AB - AE= 66 - 45= 21米,乙樓的高度 CD為21米.10分7.考點:解直角三角形的應(yīng)用-仰角俯角問題.分析:1過點E作EF丄BC于點F.在RtACEF中,求出CF二.-;EF,然后根據(jù)勾股定理解答;/ HAE=45 結(jié)合1中結(jié)論得到CF2過點E作EH丄AB于點H .在Rt AHE中的值,再根據(jù)AB=AH+BH,求出AB的值.解:1過點E作EF丄B

9、C于點F.在 RtA CEF 中,CE=20,匚:, EF2+ . _;EF 2=202, EF 0, EF=10.答:點E距水平面BC的高度為10米.2過點E作EH丄AB于點H .貝UHE=BF, BH=EF.在 RtAAHE 中,/ HAE=45 AH=HE,由1得 CF=.;EF=10.;米又 BC=6 米, HE=6+10 .;米, AB=AH+BH=6+10 . +10=16+10. K3.3 米.答:樓房AB的高約是33.3米.8.解:設(shè)EC= x,ECtan / EBCEC BE,EC tan50在 RtA BCE 中,tan/EBC =在 Rt A ACE 中,tan/EAC

10、=,AEECtan / EACECtan45=x米,/ AB + BE = AE ,5-300 + x = x,6解得:x= 1800米,這座山的高度 CD = DE EC = AF CE = 3700 1800 =1900米.答:這座山的高度是 1900米.14.【思路分析】對于解直角三角形的實際應(yīng)用問題,首先要考慮把要求的線段和線段、角放到直角三角形中求 解如解圖,過點 A作AE丄CC 于點E,交BB于點F,過點B作BD丄CC于點D.分別 在Rt AFB和Rt BDC中根據(jù)坡度求得 AF, BD的長度,再在 Rt AEC中,根據(jù)勾股定理求得 AC的長度.解:如解圖,過點A作AE丄CC于點E

11、,交BB于點F,過點B作BD丄CC于點D.那么厶AFB , BDC和厶AEC都是直角三角形,四邊形BBCD和BFED都是矩形. BF = BB FB = BB AA = 310 110= 200米, CD = CC DC = CC BB = 710 310= 400米.iu 1 : 2, i2= 1 : 1,. AF = 2BF = 400米,BD = CD = 400米.又 FE = BD = 400米,DE = BF = 200米. AE = AF + FE = 800米, CE = CD + DE = 600米.第 8 題解圖在 Rt AEC 中,AC = ;AE2+ CE2 = 800

12、2 + 6002 = 1000米.答:鋼纜AC的長度為1000米.16考點:解直角三角形的應(yīng)用-方向角問題.分析:由可得AB丄PQ, / QAP=60 / A=30 AP=56海里,要求貨船的航行速度, 即是求PB的長,可先在直角三角形 APQ中利用三角函數(shù)求出PQ,然后利用三角函數(shù)求 出PB即可.解:設(shè)貨船速度為x海里/時,4小時后貨船在點B處,作PQ丄AB于點Q.由題意AP=56海里,PB=4x海里,在直角三角形APQ中,/ APQ=60所以PQ=28.在直角三角形PQB中,/ BPQ=45所以,PQ=PBCos45=2血x.*所以,2:x=28,解得:x=7 汽.9.西答:貨船的航行速度

13、約為9.9海里/時.17.解:設(shè) MB = x,/ DF 丄 CB,/ CDF = 45 CDF是等腰直角三角形, DF = CF.1 分/ EN、DM、CB分別垂直于 AB,DF丄CB,四邊形ENMD、四邊形 DMBF為矩形,EN = DM = BF,ED = MN,CF = DF = BM = X,/ BC = 4,EN = BF = 4 x,3 分/ AN = AB MN MB,MN = DE = 1,AB= 6, AN = 5 x, 5 分曲 EAN =景,/ EAN = 310.65解得x尊.7分5即DM與BC的水平距離BM的長為2米.8分18.【思路分析】過點A作AD丄BC于點D,設(shè)AD = x m.用含x的代數(shù)式分別表示 BD , CD.再根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論