潮流計算matlab_第1頁
潮流計算matlab_第2頁
潮流計算matlab_第3頁
潮流計算matlab_第4頁
潮流計算matlab_第5頁
免費預(yù)覽已結(jié)束,剩余21頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、文檔來源為 :從網(wǎng)絡(luò)收集整理.word 版本可編輯.歡迎下載支持matlab 潮流計算08292007 電氣 0809 班% 主程序:dfile,pathname=uigetfile(ieee14.m,Select Data File);if pathname=0error(you must select a valid data file)elselfile=length(dfile);% strip off .m eval(dfile(1:lfile-2);endglobal n;global m;nb,mb=size(bus);nl,ml=size(line);nSW=0;nPV=0;n

2、PQ=0;for i=1:nb, type=bus(i,6);if type=3, nSW=nSW+1;%打開數(shù)據(jù)文件%節(jié)點重新編號% 平衡節(jié)點數(shù)目% PV 節(jié)點數(shù)目% PQ 節(jié)點數(shù)目% nb 為總節(jié)點數(shù)% 統(tǒng)計平衡節(jié)點數(shù)目SW(nSW,:)=bus(i,:);elseif type=2,nPV=nPV+1; % 統(tǒng)計 PV 節(jié)點數(shù)目PV(nPV,:)=bus(i,:);elsenPQ=nPQ+1; % 統(tǒng)計PQ節(jié)點數(shù)目PQ(nPQ,:)=bus(i,:);endend;bus=PQ;PV;SW;newbus=1:nb;f=bus(:,1);nodenum=newbus bus(:,1);bu

3、s(:,1)=newbus;for i=1:nlfor j=1:2for k=1:nbif line(i,j)=nodenum(k,2) line(i,j)=nodenum(k,1); breakendendendendY=y(bus,line); % 形成節(jié)點導(dǎo)納矩陣26文檔來源為: 從網(wǎng)絡(luò)收集整理.word 版本可編輯.歡迎下載支持K=0;%迭代次數(shù)初值Kmax=10;%最大迭代次數(shù)eps1=1.0e-10;eps2=1.0e-10;m=nPQ;n=nb;Um=eye(m,m);myf=fopen(output1.dat,w);for K=1:Kmaxfor i=1:mfor j=1:m

4、if i=jUm(i,j)=bus(i,2);endendendb=dPQ(Y,bus);C=jac(bus,Y);dX=Cb;dx=dX;nx,mx=size(dx);for i=1:n-1%計算相角bus(i,3)=bus(i,3)-dX(i,1);endB=dx(nx,n:mx)*Um; %計算電壓差 bus(1:m,2)=bus(1:m,2)-B;%計算電壓值dx(nx,n:mx)=B;fprintf(myf,- 第 %d 次迭代時雅可比矩陣-,K)fprintf(myf, n);for i=1:(n+m-1)for j=1:(n+m-1)fprintf(myf,%8.6f, C(i,

5、j);fprintf(myf, );endfprintf(myf, n);endfprintf(myf,-第 次迭代時 dPQ 的誤差-,K) fprintf(myf, n);for i=1:(n+m-1)fprintf(myf,%8.6e, b(1,i);fprintf(myf, n);endfprintf(myf, n);fprintf(myf,-第 d 次迭代時 dx(誤差)-,K) fprintf(myf, n);for i=1:(n+m-1)fprintf(myf,%8.6e, dX(i,1); fprintf(myf, n);endfprintf(myf, n);fprintf(m

6、yf,第次迭代后節(jié)點電壓(僅PQ節(jié)點),K) fprintf(myf, n);for i=1:mfprintf(myf,%8.6f, bus(i,2);fprintf(myf, n);endfprintf(myf, n);fprintf(myf, 第 %d 次迭代后相角(角度),K)fprintf(myf, n);for i=1:nfprintf(myf,%8.6f, bus(i,3)*180/pi);fprintf(myf, n); endfprintf(myf, n);if (max(abs(dx)eps1)&(max(abs(b)bus(l,1) r=bus(t,:);bus(t,:)=

7、bus(l,:);bus(l,:)=r;endendendfor i=1:nlfor j=1:2for k=1:nbif line(i,j)=nodenum(k,1)line(i,j)=nodenum(k,2);breakendendendendfclose(myf);Pf=loss(bus,line); %計算支路潮流及損耗%將節(jié)點導(dǎo)納矩陣、節(jié)點潮流計算結(jié)果寫入文件output2myf=fopen(output2.dat,w);fprintf(myf, - 節(jié)點導(dǎo)納矩陣-n);for k=1:nfor j=1:nfprintf(myf,%8.6f, real(Y(k,j);fprintf(m

8、yf, +i*);fprintf(myf,%8.6f, imag(Y(k,j); fprintf(myf, );endfprintf(myf, n);endfprintf(myf,fprintf(myf,fprintf(myf, -節(jié)點for l=1:nb- 牛頓拉夫遜法潮流計算結(jié)果節(jié)點計算結(jié)果n);節(jié)點電壓 節(jié)點相角n);注入有功功率(P)注入無功功率 (Q)類型-n);for j=1:mbif j=1|j=6fprintf(myf, %8.1f elseif j=3fprintf(myf, %8.6f elsefprintf(myf, %8.6f end, bus(l,j);, bus(l

9、,j)*180/pi);, bus(l,j);endfprintf(myf, n);endfprintf(myf, - 支路計算結(jié)果fprintf(myf,節(jié)點 (I)-n);節(jié)點 (J)線路功率 S(I,J)線路功率 S(J,I)線路損耗dS(I,J)-n);for k=1:nlfor j=1:5if j0%K0 時變壓器支路Y(I,I)=Y(I,I)+Yt+Ym;Y(J,J尸丫(J,J)+Yt/KA2;Y(I,J)=Y(I,J)-Yt/K;Y(J,I)=Y(I,J);endif K0%K0%變壓器支路 k0 時的潮流S(I,J尸bus(I,2F2*(conj(Ym+Yt*(1-1/K)+c

10、onj(Yt/K)-bus(I,2)*(cos(bus(I,3)+i*sin(bus(I,3)*bus(J,2)*(cos(bus(J,3)-i*sin(bus(J,3)*conj(Yt/K);S(J,I)=bus(J,2F2*(conj(Yt)/KA2-bus(J,2)*(cos(bus(J,3)+i*sin(bus(J,3)*bus(I,2)*(cos(bus(I,3)-i*sin(bus(I,3)*conj( Yt/K);delS(I,J)=S(I,J)+S(J,I);endif K0%變壓器支路k0 時的潮流S(I,J尸bus(I,2F2*(conj(Ym+Yt)+bus(I,2)*(

11、cos(bus(I,3)+i*sin(bus(I,3)*bus(J,2)*(cos(bus(J,3)-i*sin(bus(J,3)*conj( Yt*K);S(J,I)=bus(J,2F2*(conj(Yt)*KA2+bus(J,2)*(cos(bus(J,3)+i*sin(bus(J,3)*bus(I,2)*(cos(bus(I,3)-i*sin(bus(I,3)*conj (Yt*K);delS(I,J)=S(I,J)+S(J,I);endif J=5&Zt=0Sp=line(k,1) line(k,2) S(I,5) 0S(I,5);elseSp=line(k,1) line(k,2)

12、S(I,J) S(J,I) delS(I,J);endPf(k,:)=Sp;end% 輸入的參數(shù)數(shù)據(jù):% data for test case%各節(jié)點參數(shù):節(jié)點編號,注入有功 ,注入無功 ,(Sn=100MV A) 電壓幅值,電壓相位,類型% 類型: 1=PQ 節(jié)點 ,2=PV 節(jié)點 ,3=平衡節(jié)點% (bus#)( volt )( ang )( p )( q )(bus type)bus=1,1.0,0.0,-0.478,0.039,1;2,1.0,0.0,-0.076,-0.016,1;3,1.0,0.0,0.0,0.0,1;4,1.0,0.0,-0.295,-0.166,1;5,1.0,

13、0.0,-0.09,-0.058,1;6,1.0,0.0,-0.035,-0.018,1;7,1.0,0.0,-0.061,-0.016,1;8,1.0,0.0,-0.135,-0.058,1;9,1.0,0.0,-0.149,-0.05,1;10,1.045,0.0,0.183,0.0,2;11,1.010,0.0,-0.942,0.0,2;12,1.70,0.0,-0.112,0.047,2;13,1.90,0.0,0.0,0.174,2;14,1.060,0.0,0.0,0.0,3;%各支路參數(shù):起點編號,終點編號 , 電阻 ,電抗,電導(dǎo),電納line = 1,2,0.01335,0.0

14、4211,0.0,0.0,0;1,3,0.0,0.20912,0.0,0.0,0;1,4,0.0,0.55618,0.0,0.0,0;1,10,0.05811,0.17632,0.0,0.0340,0;1,11,0.06701,0.17103,0.0,0.0128,0;2,10,0.05695,0.17388,0.0,0.0346,0;2,12,0.0,0.25202,0.0,0.0,0;2,14,0.05403,0.22304,0.0,0.0492,0;3,4,0.0,0.11001,0.0,0.0,0;3,13,0.0,0.17615,0.0,0.0,0;4,5,0.03181,0.084

15、50,0.0,0.0,0;4,9,0.12711,0.27038,0.0,0.0,0;5,6,0.08205,0.19207,0.0,0.0,0;6,12,0.09498,0.19890,0.0,0.0,0;7,8,0.22092,0.19988,0.0,0.0,0;7,12,0.12291,0.25581,0.0,0.0,0;8,9,0.17093,0.34802,0.0,0.0,0;8,12,0.06615,0.13027,0.0,0.0,0;10,11,0.04699,0.19797,0.0,0.0438,0;10,14,0.01938,0.05917,0.0,0.0528,0;輸出結(jié)果

16、數(shù)據(jù)1 :- - 第 1 次迭代時雅可比矩陣-38.62403321.5785544.7819431.797979-0.000000-0.000000-0.000000-0.000000-0.0000005.3460515.119505-0.000000-0.000000-10.4172586.840981-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000 -0.00000021.578554-38.240787-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000

17、5.427654-0.0000006.745496-0.0000006.840981-9.429913-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000 -0.0000004.781943-0.000000-24.6582889.090083-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.00000010.786262-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000

18、000 -0.0000001.797979-0.0000009.090083-24.28250610.365394-0.000000-0.000000-0.0000003.029050-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-5.3260553.902050-0.000000-0.000000-0.000000 1.424005-0.000000-0.000000-0.00000010.365394-14.7683384.402944-0.000000-0.000000-0.000000-0.000000-0

19、.000000-0.000000-0.000000-0.000000-0.000000-0.0000003.902050-5.7829341.880885-0.000000-0.000000 -0.000000-0.000000-0.000000-0.000000-0.0000004.402944-11.362870-0.000000-0.000000-0.000000-0.000000-0.0000006.959926-0.000000-0.000000-0.000000-0.000000-0.0000001.880885-2.467393-0.000000-0.000000 -0.0000

20、00-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-7.6511132.251975-0.000000-0.000000-0.0000005.399139-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-2.9468152.489025 -0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.0000002.251975-14.9416222.314963-0.000000-0.00000010.3

21、74684-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.0000002.489025-4.555697 1.136994-0.000000-0.000000-0.0000003.029050-0.000000-0.000000-0.0000002.314963-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.0000001.424005-0.000000-0.0000001.136994 -2.5610005.3460515.427654-0.000000-0.0

22、00000-0.000000-0.000000-0.000000-0.000000-32.7276445.047017-0.000000-0.0000001.7619051.777691-0.000000-0.000000-0.000000-0.000000-0.000000 -0.0000005.119505-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.0000005.047017-10.166523-0.000000-0.0000002.005835-0.000000-0.000000-0.000000-0.000000-

23、0.000000-0.000000 -0.000000-0.0000006.745496-0.000000-0.000000-0.0000006.9599265.39913910.374684-0.000000-0.000000-29.479246-0.000000-0.000000-0.000000-0.000000-0.0000003.3235492.594145 5.268177 -0.000000-0.000000-0.00000010.786262-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000

24、000-10.786262-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000 -0.00000010.608721-6.8409810.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000-2.0058350.0000000.000000-37.96863121.5785544.7819431.797979-0.000000-0.000000-0.000000-0.000000-6.8409819.7061230.000000 0.000000 0.00

25、0000 0.000000 0.000000 0.0000000.0000000.0000000.0000000.00000021.578554-31.542421-0.000000-0.000000-0.000000-0.000000-0.000000-0.0000000.0000000.0000000.000000 0.0000000.0000000.000000 0.0000000.0000000.0000000.0000000.0000000.0000004.781943-0.000000-14.4397249.090083-0.000000-0.000000-0.000000-0.0

26、000000.0000000.0000000.000000 5.326055-3.902050 0.000000 0.000000 0.000000-1.4240050.0000000.0000000.0000001.797979-0.0000009.090083-24.28250610.365394-0.000000-0.0000003.0290500.0000000.0000000.000000 -3.9020505.782934 -1.8808850.000000 0.0000000.0000000.0000000.0000000.000000-0.000000-0.000000-0.0

27、0000010.365394-14.768338-0.000000-0.000000-0.0000000.0000000.0000000.0000000.000000-1.8808855.2044330.000000 0.0000000.0000000.000000-3.3235490.000000-0.000000-0.000000-0.000000-0.0000004.402944-0.000000-0.000000-0.0000000.0000000.0000000.0000000.0000000.000000 0.0000005.083169-2.4890250.0000000.000

28、000-2.5941450.000000-0.000000-0.000000-0.000000-0.000000-0.000000-3.2047642.251975-0.0000000.0000000.0000000.000000 0.0000000.000000 0.000000-2.489025 8.894195-1.1369940.000000-5.2681770.000000-0.000000-0.000000-0.000000-0.000000-0.0000002.251975-6.3977652.3149630.0000000.0000000.000000 -1.4240050.0

29、00000 0.000000 0.000000 -1.1369942.5610000.0000000.000000 0.000000 -0.000000 -0.000000 -0.000000 3.029050 -0.000000-0.0000002.314963-5.344014-第 1 次迭代時dPQ 的誤差-3.822688e-0016.210513e-0020.000000e+000-2.950000e-001-9.000000e-002-5.344014-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.

30、000000-0.000000-1.761905-0.000000-1.777691-0.0000000.000000-0.0000000.000000-0.0000000.0000004.4029440.000000-5.6311660.000000-0.0000000.000000-0.0000000.000000-0.0000001.333520e+0001.007177e+0002.034249e+000-1.490000e-0016.056626e-002-9.219354e-001-7.942109e+0000.000000e+0003.667009e-0013.333183e+0

31、005.109282e+000-1.660000e-001-5.800000e-0022.847852e+0002.207175e+0004.213929e+000-5.000000e-002第1次迭代時dx(誤差)-7.699084e-001-8.544764e-001-1.189723e+000-1.410571e+000-1.585607e+000-1.994895e+000-2.196974e+000-2.162427e+000-1.721659e+000-4.249173e-001-6.178169e-001-2.246296e+000-1.189723e+000-5.568104e

32、-001-5.586033e-001-1.299237e+000-1.208867e+000-1.285646e+000-1.499291e+000-2.011550e+000-1.901143e+000-1.488513e+000第 1 次迭代后節(jié)點電壓(僅 PQ 節(jié)點 )1.5568101.5586032.2992372.2088672.2856462.4992913.0115502.9011432.488513第 1 次迭代后相角( 角度 )44.11250048.95789268.16611180.81979290.848607114.299041125.877362123.89794

33、698.64381324.34596735.398301128.70329568.1661110.000000- - 第 2 次迭代時雅可比矩陣- 88.468596 50.770062 15.630499 4.956802 0.000000 0.000000 0.000000 0.000000 0.000000 8.7600318.3512030.0000000.000000-17.67902420.9626216.9766783.695668-0.000000-0.000000-0.000000-0.000000-0.00000053.574257-70.1633000.0000000.0

34、00000 0.000000 0.000000 0.000000 0.000000 0.0000008.844924-0.0000001.8716490.00000012.117328-29.191523-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.00000015.630499-0.000000-85.47526245.0445950.0000000.0000000.0000000.0000000.000000-0.000000-0.0000000.00000024.800168-6.976678-0.0000003.136

35、30210.112981-0.000000-0.000000-0.000000-0.000000-0.0000004.956802-0.00000045.044595-111.55769648.1013580.0000000.0000000.00000013.454941-0.000000-0.0000000.000000-0.000000-3.695668-0.000000-10.112981-24.72061128.512426-0.000000-0.000000-0.00000012.548251-0.000000-0.000000-0.00000054.962689-73.761205

36、18.7985160.0000000.0000000.000000-0.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.00000010.286004-30.26975019.866386-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.00000027.350216-42.1319390.0000000.000000-0.000000-0.000000-0.00000014.781722-0.000000-0.000000-0.000000-0.000000-0.0000

37、00-0.152201-35.701334-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-36.26958720.414751-0.000000-0.000000-0.00000015.854836-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-43.16898221.053877-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.0000

38、0018.912486-66.24245918.617657-0.000000-0.00000028.712316-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.00000022.413069-72.7446070.293713-0.000000-0.000000-0.00000018.246829-0.0000000.0000000.00000011.613550-29.860379-0.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.0000002.355263-0.

39、000000-0.000000-0.00000014.554342-14.8093936.9047626.537084 0.000000 0.000000 0.000000 0.000000 -0.000000 -0.0000000.000000-35.8518614.723753-0.0000000.000000 5.396002 6.042147 -0.000000 -0.000000 -0.000000 -0.0000000.0000000.000000-0.0000007.4049870.0000000.0000000.0000000.000000 0.000000-0.0000000

40、.0000000.000000-12.588050-0.0000000.0000004.294174-0.000000-0.000000-0.000000-0.0000000.000000-0.000000-0.000000-0.0000001.871649-0.000000-0.000000-0.00000018.91440916.62516731.272979-0.000000-0.000000-68.684204-0.000000-0.000000-10.345614-0.000000-0.0000003.7182157.00125812.708639 -0.000000-0.000000-0.00000024.800168 0.000000 0.000000 0.000000 0.000000 0.0000000.000000-0.0000000.000000-24.800168-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.00000033.280772-20.962621-6.976678 -3.695668 0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論