版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 第十一章 三角形 1、三角形的概念2、三角形中的主要線段(1)三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點間的線段叫做三角形的角平分線。(2)在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。(3)從三角形一個頂點向它的對邊做垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。3、三角形的穩(wěn)定性三角形的形狀是固定的,三角形的這個性質(zhì)叫做三角形的穩(wěn)定性。三角形的這個性質(zhì)在生產(chǎn)生活中應(yīng)用很廣,需要穩(wěn)定的東西一般都制成三角形的形狀5、三角形的分類三角形按邊的關(guān)系分類如下: 不等邊三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等邊三角形三角形按角的關(guān)系分類
2、如下: 直角三角形(有一個角為直角的三角形)三角形 銳角三角形(三個角都是銳角的三角形) 斜三角形 鈍角三角形(有一個角為鈍角的三角形)把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。6、三角形的三邊關(guān)系定理及推論(1)三角形三邊關(guān)系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之差小于第三邊。(2)三角形三邊關(guān)系定理及推論的作用:判斷三條已知線段能否組成三角形當已知兩邊時,可確定第三邊的范圍。證明線段不等關(guān)系。7、三角形的內(nèi)角和定理及推論 三角形的內(nèi)角和定理:三角形三個內(nèi)角和等于180。推論:直角三角形的兩個銳角互余。三角形的一個外角等于和
3、它不相鄰的來兩個內(nèi)角的和。三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。8、三角形的面積=底高/2多邊形知識要點梳理 定義:由三條或三條以上的線段首位順次連接所組成的封閉圖形叫做多邊形 凸多邊形 分類1: 凹多邊形 正多邊形:各邊相等,各角也相等的多邊形叫做正多邊形。 分類2:多邊形非正多邊形:1、n邊形的內(nèi)角和等于180(n-2)。 多邊形的定理 2、任意凸形多邊形的外角和等于360。 3、n邊形的對角線條數(shù)等于1/2n(n-3) 第十二章 全等三角形一、全等三角形能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移
4、、翻折、旋轉(zhuǎn)可以得到它的全等形。2、全等三角形有哪些性質(zhì)(1):全等三角形的對應(yīng)邊相等、對應(yīng)角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應(yīng)邊上的對應(yīng)中線、角平分線、高線分別相等。3、全等三角形的判定邊邊邊:三邊對應(yīng)相等的兩個三角形全等(可簡寫成“SSS”)邊角邊:兩邊和它們的夾角對應(yīng)相等兩個三角形全等(可簡寫成“SAS”)角邊角:兩角和它們的夾邊對應(yīng)相等的兩個三角形全等(可簡寫成“ASA”)角角邊:兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等(可簡寫成“AAS”)斜邊.直角邊:斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(可簡寫成“HL”)4、證明兩個三角形全等的基本
5、思路:二、角的平分線:1、(性質(zhì))角的平分線上的點到角的兩邊的距離相等.2、(判定)角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上。三、學習全等三角形應(yīng)注意以下幾個問題:(1):要正確區(qū)分“對應(yīng)邊”與“對邊”,“對應(yīng)角”與 “對角”的不同含義;(2):表示兩個三角形全等時,表示對應(yīng)頂點的字母要寫在對應(yīng)的位置上;(3):“有三個角對應(yīng)相等”或“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等;(4):時刻注意圖形中的隱含條件,如 “公共角” 、“公共邊”、“對頂角” 4、全等變換只改變圖形的位置,二不改變其形狀大小的圖形變換叫做全等變換。全等變換包括一下三種:(1)平移變換:把圖形沿某條直
6、線平行移動的變換叫做平移變換。(2)對稱變換:將圖形沿某直線翻折180,這種變換叫做對稱變換。(3)旋轉(zhuǎn)變換:將圖形繞某點旋轉(zhuǎn)一定的角度到另一個位置,這種變換叫做旋轉(zhuǎn)變換。 第十二章 軸對稱一、軸對稱圖形1. 把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。2. 把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應(yīng)點,叫做對稱點3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系 4.軸對稱的性質(zhì) 關(guān)于某直線對稱的兩個圖
7、形是全等形。 如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。 軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。 如果兩個圖形的對應(yīng)點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。二、線段的垂直平分線 1. 經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。2.線段垂直平分線上的點與這條線段的兩個端點的距離相等 3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等四、(等腰三角形)知識點回顧1.等腰三角形的性質(zhì).等腰三角形的兩個底角相等。(等邊
8、對等角).等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)2、等腰三角形的判定: 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)五、(等邊三角形)知識點回顧1.等邊三角形的性質(zhì):等邊三角形的三個角都相等,并且每一個角都等于600 。2、等邊三角形的判定: 三個角都相等的三角形是等邊三角形。 有一個角是600的等腰三角形是等邊三角形。3. 在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。1、等腰三角形的性質(zhì)(1)等腰三角形的性質(zhì)定理及推論:定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)推論1:等腰三角形頂角平分線平分底邊
9、并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。推論2:等邊三角形的各個角都相等,并且每個角都等于60。(2)等腰三角形的其他性質(zhì):等腰直角三角形的兩個底角相等且等于45等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。等腰三角形的三邊關(guān)系:設(shè)腰長為a,底邊長為b,則a等腰三角形的三角關(guān)系:設(shè)頂角為頂角為A,底角為B、C,則A=1802B,B=C=2、等腰三角形的判定定理及推論:定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。推論1:三個角都相等的三角形是等邊三角形
10、推論2:有一個角是60的等腰三角形是等邊三角形。推論3:在直角三角形中,如果一個銳角等于30,那么它所對的直角邊等于斜邊的一半。等腰三角形的性質(zhì)與判定等腰三角形性質(zhì)等腰三角形判定中線1、等腰三角形底邊上的中線垂直底邊,平分頂角;2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。1、兩邊上中線相等的三角形是等腰三角形;2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形角平分線1、等腰三角形頂角平分線垂直平分底邊;2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么
11、這個三角形是等腰三角形;2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。高線1、等腰三角形底邊上的高平分頂角、平分底邊;2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;2、有兩條高相等的三角形是等腰三角形。角等邊對等角等角對等邊邊底的一半腰長周長的一半兩邊相等的三角形是等腰三角形4、三角形中的中位線連接三角形兩邊中點的線段叫做三角形的中位線。(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個新的三角形。(2)要會區(qū)別三角形中線與中位線。三角形中位線定理:三角形的中位線平行于第三
12、邊,并且等于它的一半。三角形中位線定理的作用:位置關(guān)系:可以證明兩條直線平行。數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。常用結(jié)論:任一個三角形都有三條中位線,由此有:結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。結(jié)論4:三角形一條中線和與它相交的中位線互相平分。結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。 第十四章 整式乘除與因式分解一回顧知識點 1、主要知識回顧:冪的運算性質(zhì):amanamn (m、n為正整數(shù))同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加 amn
13、 (m、n為正整數(shù))冪的乘方,底數(shù)不變,指數(shù)相乘 (n為正整數(shù))積的乘方等于各因式乘方的積 amn (a0,m、n都是正整數(shù),且mn)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減零指數(shù)冪的概念:a01 (a0)任何一個不等于零的數(shù)的零指數(shù)冪都等于l負指數(shù)冪的概念:ap (a0,p是正整數(shù))任何一個不等于零的數(shù)的p(p是正整數(shù))指數(shù)冪,等于這個數(shù)的p指數(shù)冪的倒數(shù)也可表示為:(m0,n0,p為正整數(shù))2、乘法公式:平方差公式:(ab)(ab)a2b2文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差完全平方公式:(ab)2a22abb2 (ab)2a22abb2文字語言敘述:兩個數(shù)的和(或差)的
14、平方等于這兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍3、因式分解:因式分解的定義把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解 掌握其定義應(yīng)注意以下幾點: (1)分解對象是多項式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;(2)因式分解必須是恒等變形; (3)因式分解必須分解到每個因式都不能分解為止弄清因式分解與整式乘法的內(nèi)在的關(guān)系因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式二、熟練掌握因式分解的常用方法1、提公因式(1)掌握提公因式法的概念;(2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情
15、況下有三部分:系數(shù)一各項系數(shù)的最大公約數(shù);字母各項含有的相同字母;指數(shù)相同字母的最低次數(shù);(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式需注意的是,提取完公因式后,另一個因式的項數(shù)與原多項式的項數(shù)一致,這一點可用來檢驗是否漏項(4)注意點:提取公因式后各因式應(yīng)該是最簡形式,即分解到“底”;如果多項式的第一項的系數(shù)是負的,一般要提出“”號,使括號內(nèi)的第一項的系數(shù)是正的2、公式法運用公式法分解因式的實質(zhì)是把整式中的乘法公式反過來使用;常用的公式:平方差公式: a2b2 (ab)(ab)完全平方公式:a22abb2(ab)2 a22abb2(ab)23.十字相乘法 第十
16、五章 分式知識點一:分式的定義一般地,如果A,B表示兩個整數(shù),并且B中含有字母,那么式子叫做分式,A為分子,B為分母。知識點二:與分式有關(guān)的條件分式有意義:分母不為0()分式無意義:分母為0()分式值為0:分子為0且分母不為0()分式值為正或大于0:分子分母同號(或)分式值為負或小于0:分子分母異號(或)分式值為1:分子分母值相等(A=B)分式值為-1:分子分母值互為相反數(shù)(A+B=0)知識點三:分式的基本性質(zhì)分式的分子和分母同乘(或除以)一個不等于0的整式,分式的值不變。字母表示:,其中A、B、C是整式,C0。拓展:分式的符號法則:分式的分子、分母與分式本身的符號,改變其中任何兩個,分式的值
17、不變,即注意:在應(yīng)用分式的基本性質(zhì)時,要注意C0這個限制條件和隱含條件B0。知識點四:分式的約分定義:根據(jù)分式的基本性質(zhì),把一個分式的分子與分母的公因式約去,叫做分式的約分。步驟:把分式分子分母因式分解,然后約去分子與分母的公因。注意:分式的分子與分母為單項式時可直接約分,約去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。 分子分母若為多項式,約分時先對分子分母進行因式分解,再約分。知識點四:最簡分式的定義一個分式的分子與分母沒有公因式時,叫做最簡分式。知識點五:分式的通分 分式的通分:根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母分式,叫做分式的通分
18、。 分式的通分最主要的步驟是最簡公分母的確定。最簡公分母的定義:取各分母所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。確定最簡公分母的一般步驟: 取各分母系數(shù)的最小公倍數(shù); 單獨出現(xiàn)的字母(或含有字母的式子)的冪的因式連同它的指數(shù)作為一個因式; 相同字母(或含有字母的式子)的冪的因式取指數(shù)最大的。 保證凡出現(xiàn)的字母(或含有字母的式子)為底的冪的因式都要取。注意:分式的分母為多項式時,一般應(yīng)先因式分解。知識點六分式的四則運算與分式的乘方 分式的乘除法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。式子表示為:分式除以分式:把除式的分子、分母顛倒位置后,與被除式相乘。式子表示為 分式的乘方:把分子、分母分別乘方。式子 分式的加減法則:同分母分式加減法:分母不變,把分子相加減。式子表示為異分母分式加減法:先通分,化為同分母的分式,然后再加減。式子表示為整式與分式加減法:可以把整式當作一個整數(shù),整式前面是負號,要加括號,看作是分母為1的分式,再通分。 分式的加、減、乘、除、乘方的混合運算的運算順序先乘方、再乘除、后加減,同級運算中,誰在前先算誰,有括號的先算括號里面的,也要注意靈活提高解題質(zhì)量。注意:在運算過程中,要明確每一步變形的目的和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年勞動協(xié)議規(guī)范文本
- 2024年專用授權(quán)經(jīng)銷協(xié)議范本
- 宜良縣室內(nèi)照明合同范本
- 范本:計件工資制員工勞動協(xié)議協(xié)議
- 2024年房產(chǎn)開發(fā)合作協(xié)議文本
- 2024年度土地抵押貸款協(xié)議模板
- 心理健康與學校心理輔導(dǎo)學習通超星期末考試答案章節(jié)答案2024年
- 物業(yè)設(shè)備合同范本
- 紹興市各級機關(guān)單位錄用公務(wù)員真題
- 2024年度化物業(yè)管理服務(wù)協(xié)議
- 危險貨物道路運輸規(guī)則第5部分:托運要求(JTT617.5-2018)
- DZ/T 0462.1-2023 礦產(chǎn)資源“三率”指標要求 第1部分:煤(正式版)
- 全面推進依法治國的總目標和原則教學設(shè)計
- 嘔血窒息的護理查房
- 《紙質(zhì)文物修復(fù)與保護》課件-30古籍的版式
- 工程防滲漏培訓(xùn)課件
- 鋼結(jié)構(gòu)廠房拆除施工方案案例
- 《中國藥典》四部通則片劑和膠囊劑培訓(xùn)
- 糖尿病基礎(chǔ)知識考試試題及答案
- 抗血小板治療中國專家共識
- 金融風險2024年金融風險的防范和化解
評論
0/150
提交評論