高中數(shù)學(xué) 正弦、余弦函數(shù)的性質(zhì)(二)教案 新人教A版_第1頁
高中數(shù)學(xué) 正弦、余弦函數(shù)的性質(zhì)(二)教案 新人教A版_第2頁
高中數(shù)學(xué) 正弦、余弦函數(shù)的性質(zhì)(二)教案 新人教A版_第3頁
高中數(shù)學(xué) 正弦、余弦函數(shù)的性質(zhì)(二)教案 新人教A版_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高中數(shù)學(xué)人教A版精品教案集:正弦、余弦函數(shù)的性質(zhì)(二)教學(xué)目的:知識目標(biāo):要求學(xué)生能理解三角函數(shù)的奇、偶性和單調(diào)性;能力目標(biāo):掌握正、余弦函數(shù)的奇、偶性的判斷,并能求出正、余弦函數(shù)的單調(diào)區(qū)間。 德育目標(biāo):激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情操,培養(yǎng)學(xué)生堅忍不拔的意志, 實事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。 教學(xué)重點:正、余弦函數(shù)的奇、偶性和單調(diào)性;教學(xué)難點:正、余弦函數(shù)奇、偶性和單調(diào)性的理解與應(yīng)用授課類型:新授課教學(xué)模式:啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).教 具:多媒體、實物投影儀教學(xué)過程:一、 復(fù)習(xí)引入:二、講解新課: 1. 奇偶性 請同學(xué)們觀察正、余弦函數(shù)的圖形,說出函數(shù)圖象有怎樣的對稱性?

2、其特點是什么?(1)余弦函數(shù)的圖形當(dāng)自變量取一對相反數(shù)時,函數(shù)y取同一值。例如:f(-)=,f()= ,即f(-)=f();由于cos(x)=cosx f(-x)= f(x). 以上情況反映在圖象上就是:如果點(x,y)是函數(shù)y=cosx的圖象上的任一點,那么,與它關(guān)于y軸的對稱點(-x,y)也在函數(shù)y=cosx的圖象上,這時,我們說函數(shù)y=cosx是偶函數(shù)。定義:一般地,如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)= f(x),那么函數(shù)f(x)就叫做偶函數(shù)。例如:函數(shù)f(x)=x2+1, f(x)=x4-2等都是偶函數(shù)。(2)正弦函數(shù)的圖形觀察函數(shù)y=sinx的圖象,當(dāng)自變量取一

3、對相反數(shù)時,它們對應(yīng)的函數(shù)值有什么關(guān)系?這個事實反映在圖象上,說明函數(shù)的圖象有怎樣的對稱性呢?函數(shù)的圖象關(guān)于原點對稱。也就是說,如果點(x,y)是函數(shù)y=sinx的圖象上任一點,那么與它關(guān)于原點對稱的點(-x,-y)也在函數(shù)y=sinx的圖象上,這時,我們說函數(shù)y=sinx是奇函數(shù)。定義:一般地,如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有 f(x)=f(x) ,那么函數(shù)f(x)就叫做奇函數(shù)。例如:函數(shù)y=x, y= 都是奇函數(shù)。如果函數(shù)f(x)是奇函數(shù)或偶函數(shù),那么我們就說函數(shù)f(x)具有奇偶性。注意:從函數(shù)奇偶性的定義可以看出,具有奇偶性的函數(shù):(1)其定義域關(guān)于原點對稱;(2)f(-x

4、)= f(x)或f(-x)=- f(x)必有一成立。因此,判斷某一函數(shù)的奇偶性時。首先看其定義域是否關(guān)于原點對稱,若對稱,再計算f(-x),看是等于f(x)還是等于- f(x),然后下結(jié)論;若定義域關(guān)于原點不對稱,則函數(shù)沒有奇偶性。2.單調(diào)性從ysinx,x的圖象上可看出:當(dāng)x,時,曲線逐漸上升,sinx的值由1增大到1.當(dāng)x,時,曲線逐漸下降,sinx的值由1減小到1.結(jié)合上述周期性可知:正弦函數(shù)在每一個閉區(qū)間2k,2k(kZ)上都是增函數(shù),其值從1增大到1;在每一個閉區(qū)間2k,2k(kZ)上都是減函數(shù),其值從1減小到1.余弦函數(shù)在每一個閉區(qū)間(2k1),2k(kZ)上都是增函數(shù),其值從1增

5、加到1;在每一個閉區(qū)間2k,(2k1)(kZ)上都是減函數(shù),其值從1減小到1.3.有關(guān)對稱軸觀察正、余弦函數(shù)的圖形,可知y=sinx的對稱軸為x= kZy=cosx的對稱軸為x= kZ(1)寫出函數(shù)的對稱軸;(2)的一條對稱軸是( C )(A) x軸, (B) y軸, (C) 直線, (D) 直線4.例題講解例1 判斷下列函數(shù)的奇偶性 (1)(2)f(x)=sin4x-cos4x+cos2x;(3)(4)(5);例2 (1)函數(shù)f(x)sinx圖象的對稱軸是 ;對稱中心是 . (2)函數(shù)圖象的對稱軸是 ;對稱中心是 .例3 已知f(x)=ax+bsin3x+1(a、b為常數(shù)),且f(5)=7,求f(-5).例4 已知(1) 求f(x)的定義域和值域;(2) 判斷它的奇偶性、周期性;(3) 判斷f(x)的單調(diào)性.例5 (1)是三角形的一個內(nèi)角,且關(guān)于x 的函數(shù)f(x)=sain(x+)+cos(x-)是偶函數(shù),求的值. (2)若函數(shù)f(x)=sin2x+bcos2x的圖象關(guān)于直線對稱,求b的值.例6 已知,試確定函數(shù)的奇偶性、單調(diào)性.1. 有關(guān)奇偶性(1)(2)有關(guān)單調(diào)性(1)利用公式,求證在上是增函數(shù);(2)不通過求值,指出下列各式大于0還是小于0;(3)比較大??;(4)求函數(shù)的單調(diào)遞增區(qū)間;二、 鞏固與練習(xí)練習(xí)講評(1)化簡:(2)已知非零常數(shù)滿

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論