蘇教版八年級上冊數(shù)學(xué)勾股定理精選試題._第1頁
蘇教版八年級上冊數(shù)學(xué)勾股定理精選試題._第2頁
蘇教版八年級上冊數(shù)學(xué)勾股定理精選試題._第3頁
蘇教版八年級上冊數(shù)學(xué)勾股定理精選試題._第4頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、勾股定理知識點一:勾股定理222直角三角形兩直角邊a、b 的平方和等于斜邊c 的平方。(即: a +b c )勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直角三角形的另兩邊(3)利用勾股定理可以證明線段平方關(guān)系的問題知識點二:勾股定理的逆定理如果三角形的三邊長: a、 b、 c,則有關(guān)系 a2 +b2c2 ,那么這個三角形是直角三角形。要點詮釋:用勾股定理的逆定理判定一個三角形是否是直角三角形應(yīng)注意:(1)首先確定最大邊,不妨設(shè)最長邊長為:c;(2)驗證 c2 與 a2 +b2 是

2、否具有相等關(guān)系,若 c2a2+b2,則 ABC是以 C 為直角的直角三角形(若 c2>a2 +b2,則 ABC是以 C 為鈍角的鈍角三角形;若 c2<a2+b2,則 ABC 為銳角三角形)。知識點三:勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理;聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反,都與直角三角形有關(guān)。知識點四:互逆命題的概念如果一個命題的題設(shè)和結(jié)論分別是另一個命題的結(jié)論和題設(shè), 這樣的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。規(guī)律方法指導(dǎo)1勾股定理的證明實際采用的是圖形面積與代數(shù)恒等式的關(guān)系

3、相互轉(zhuǎn)化證明的。2勾股定理反映的是直角三角形的三邊的數(shù)量關(guān)系,可以用于解決求解直角三角形邊邊關(guān)系的題目。3勾股定理在應(yīng)用時一定要注意弄清誰是斜邊誰直角邊,這是這個知識在應(yīng)用過程中易犯的主要錯誤。a,b,c 有下列關(guān)系: a2+b2c2,4. 勾股定理的逆定理:如果三角形的三條邊長?那么這個三角形是直角三角形;該逆定理給出判定一個三角形是否是直角三角形的判定方法5.? 應(yīng)用勾股定理的逆定理判定一個三角形是不是直角三角形的過程主要是進行代數(shù)運算,通過學(xué)習(xí)加深對“數(shù)形結(jié)合”的理解我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題。 如果把其中一個叫做原命題,那么另一個叫做它的逆命題。 (例:勾股定理與勾

4、股定理逆定理)勾股定理練習(xí)一填空題:1. 在 Rt ABC中, C=90°( 1)若 a=5,b=12,則 c=_;(2)b=8, c=17,則 SABC=_。2. 若一個三角形的三邊之比為 512 13,則這個三角形是 _(按角分類)。3. 直角三角形的三邊長為連續(xù)自然數(shù),則其周長為 _。4傳說 , 古埃及人曾用拉繩”的方法畫直角 , 現(xiàn)有一根長 24 厘米的繩子 , 請你利用它拉出一個周長為 24 厘米的直角三角形 , 那么你拉出的直角三角形三邊的 長 度分 別 為 _厘米 ,_ 厘 米 ,_ 厘米 , 其中 的道 理是_.5. 命題“對頂角相等” 的逆命題為 _,它是 _命題

5、.( 填“真”或“假” )6觀察下列各式: 32+42=52 ;82+62 =102;152+82 =172;242 +102=262; ;你有沒有發(fā)現(xiàn)其中的規(guī)律?請用你發(fā)現(xiàn)的規(guī)律寫出接下來的式子:。7利用四個全等的直角三角形可以拼成如圖所示的圖形,這個圖形被稱為弦圖( 最早由三國時期的數(shù)學(xué)家趙爽給出的) 從圖中可以看到: 大正方形面積小正方形面積四個直角三角形面積因而 c2 ,化簡后即2B為 cc baA第8題圖8一只螞蟻從長、寬都是 3,高是 8 的長方體紙箱的 A 點沿紙箱爬到 B 點,那么它所行的最短路線的長是 _。二選擇題:9觀察下列幾組數(shù)據(jù) :(1) 8, 15, 17; (2)

6、7, 12, 15;(3)12, 15, 20; (4) 7,24, 25.其中能作為直角三角形的三邊長的有( ) 組A. 1B.2C.3D. 410三個正方形的面積如圖,正方形A 的面積為()6A10A.6B.C.64D.811. 已知直角三角形的兩條邊長分別是5 和12,則第三邊為()119或119不能確定12. 下列命題如果 a、b、c 為一組勾股數(shù),那么 4a、4b、 4c 仍是勾股數(shù);如果直角三角形的兩邊是 5、12,那么斜邊必是 13;如果一個三角形的三邊是 12、25、21,那么此三角形必是直角三角形;一個等腰直角三角形的三邊是 a、 b、c,(a>b=c),那么 a2 b

7、2 c2=211。其中正確的是()A、B、C、D、13. 三角形的三邊長為(A. 等邊三角形 ;B.a+b)2=c2+2ab, 則這個三角形是 (鈍角三角形 ; C.直角三角形 ; D.)銳角三角形.14. 如圖一輪船以 16 海里 / 時的速度從港口 A 出發(fā)向東北方向航行,另一輪船以12 海里 / 時的速度同時從港口 A 出發(fā)向東南方向航行,離開港口 2 小時后,則兩船相距()A 、25 海里B、30 海里C、35 海里D、40 海里15. 已知等腰三角形的腰長為 10,一腰上的高為 6,則以底邊為邊長的正方形的面積為()A 、40B、 80C、 40 或 360D、80 或 36016某

8、市在舊城改造中, 計劃在市內(nèi)一塊如圖所示的三角形空地上種植草皮以美化環(huán)境,已知這種草皮每平方米售價a 元,則購買這種草皮至少需要()A 、 450a 元B、 225a 元C、150a 元D、300a 元北20m30mA東150°第 16題圖南第14題三解答題:17如圖 1,在單位正方形組成的網(wǎng)格圖中標有AB、 CD、EF、GH四條線段,其中能構(gòu)成一個直角三角形三邊的線段是()(A)CD、EF、GH(B)AB、 EF、GH(C)AB、CD、GH(D)AB、 CD、EF圖 118.(1)在數(shù)軸上作出表示2的點.(2)在第 (1) 的基礎(chǔ)上分別作出表示 1-2 和2 +1 的點.19有一個

9、小朋友拿著一根竹竿要通過一個長方形的門,高出 1 尺,斜放就恰好等于門的對角線長,已知門寬如果把竹竿豎放就比門4 尺, 求竹竿高與門高。20一架方梯長 25 米,如圖,斜靠在一面墻上,梯子底端離墻7 米,(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了4 米,那么梯子的底端在水平方向滑動了幾米?AAOB B21. 如圖 5,將正方形 ABCD折疊,使頂點 A 與 CD邊上的點 M重合,折痕交 AD于E,交 BC于 F,邊 AB折疊后與 BC邊交于點 G。如果 M為 CD邊的中點,求證: DE: DM:EM=3:4:5。圖 53、如圖所示, ABC是等腰直角三角形, AB=AC,D

10、是斜邊 BC的中點, E、F 分別是 AB、AC邊上的點,且 DEDF,若 BE=12,CF=5求線段 EF 的長。1、如圖,這是一個供滑板愛好者使用的U 型池,該 U 型池可以看作是一個長方體去掉一個“半圓柱”而成,中間可供滑行部分的截面是半徑為 4m的半圓,其邊緣 AB=CD=20m,點 E 在 CD上, CE=2m,一滑行愛好者從 A 點到 E 點,則他滑行的最短距離是多少?(邊緣部分的厚度可以忽略不計,結(jié)果取整數(shù))2、將一根 24cm的筷子,置于底面直徑為 15cm,高 8cm的圓柱形水杯中,如圖所示,設(shè)筷子露在杯子外面的長度為hcm,則 h 的取值范圍是()A h 17cmBh8cm

11、C 15cmh16cmD7cm h 16cm3、如圖,在 Rt ABC 中,A 90 , D為斜邊 BC中點, DEDF , 求證:EF 2BE 2CF 24、如圖,在等腰直角ABC 的斜邊上取異于B, C 的兩點 E, F , 使EAF45 , 求證:以 EF , BE, CF 為邊的三角形是直角三角形。5、 如圖,在ABC 中,BAC 90 , AB AC, D 是 BC 上的點,求證:BD 2CD 22AD 2第一章勾股定理測試題一、選擇題:(每小題 4 分,共 40 分)1、下列四組數(shù)據(jù)不能作為直角三角形的三邊長的是(A6、8、10B. 5、12、 13C. 12)、18、 22D.

12、9、12、152、將直角三角形的三條邊長同時擴大同一倍數(shù),得到的三角形是()A、鈍角三角形B、銳角三角形C 、直角三角形D 、等腰三角形3、如圖( 1),帶陰影的矩形面積是 ()平方厘米A9B24C45D514、如果梯子的底端離建筑物5米 ,13 米長的梯子可以達到該建筑物的高度是()A.12米B.13米C.14米D.15米5、等腰三角形的一腰長為13, 底邊長為 10, 則它的面積為()A.65B.60C.120D.1306、已知一直角三角形的木版,三邊的平方和為2)1800cm, 則斜邊長為(A、 80mB、 30mC、 90mD、 120m7、等邊三角形的邊長是 10, 它的高的平方等于

13、()A.50B.75C.125D.2008、直角三角形的兩直角邊分別為5 厘米、 12 厘米,則斜邊上的高是()A、6 厘米B、8厘米C、80 厘米D、 60厘米13139、已知 RtABC中,C=90°,若 a+b=14cm,c=10cm,則 Rt ABC的面積是()2222A 、24cmB、36cmC、48cmD、60cmA10 如圖,在直角三角形中, C90o ,將其繞B點順時針旋AC=3BC轉(zhuǎn)一周,則分別以 BA,BC為半徑的圓形成一環(huán),該圓環(huán)的面積為()、二、填空題:(每小題 3 分,共 15 分)11、 ABC中,若 AC2 AB2= BC 2 ,則 B C=C12、若三

14、角形的三邊之比為345,則此三角形為三角形。DBA7cm13、如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大2的正方形的邊和長為7cm,則正方形 A, B, C, D的面積之和為 _cm。15、正方形的面積為100 平方厘米,則該正方形的對角線長的平方為三、解答題:(共 45 分)16、如圖,從電線桿離地面 6 m 處向地面拉一條長 10 m 的纜繩,這條纜繩在地面的固定點距離電線桿底部有多遠?( 6 分)ABC18、小明想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿上的繩子垂到地面還多 1m,當它把繩子的下端拉開 5m后,發(fā)現(xiàn)下端剛好接觸地面,則旗桿的高度是多少?( 7 分)19、19.

15、 如圖正方形網(wǎng)格中的 ABC,若小方格邊長為 1, 請你根據(jù)所學(xué)的知識(1) 求 ABC的面積(1) 判斷 ABC是什么形狀 ? 并說明理由 . ( 8 分)20、如圖所示,折疊長方形一邊 AD,點 D落在 BC邊的點 F 處,已知 BC=10厘米, AB=8厘米,求 FC的長。(7 分)22、( 8 分)中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對勾股定理作理論的證明。 最早對勾股定理進行證明的, 是三國時期吳國的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖” ,用形數(shù)結(jié)合的方法,給出了勾股定理的詳細證明。在這幅“勾股圓方圖”中,以弦為邊長得到正方形 ABDE是由 4 個全等的

16、直角三角形再加上中間的那個小正方形組成的。 每個直角三角形的面積為 ab/2 ;中間的小正方形邊長為 b-a ,則面積為( b-a )2。于是便可得如下的式子:C( 1) 你能用下面的圖形也來驗證一下勾股定理嗎?試一試?。?2) 你自己還能設(shè)計一種方法來驗證勾股定理嗎?第 17題圖一、選擇題1.已知一個 Rt 的兩邊長分別為3 和 4,則第三邊長的平方是()A.25B.14C.7D.7 或 252.下列各組數(shù)中,以a,b,c 為邊的三角形不是 Rt的是()A.a=7,b=24,c=25B.a=7,b=24,c=24C.a=6,b=8,c=10D.a=3,b=4,c=53.若線段 a,b,c 組

17、成 Rt,則它們的比可以是()A.234B.346C.5 1213D.4674. 已知,一輪船以 16 海里 / 時的速度從港口 A 出發(fā)向東北方向航行,另一輪船以 12 海里 / 時的速度同時從港口 A 出發(fā)向東南方向航行,離開港口 2 小時后,則兩船相距()A.25 海里B.30 海里C.35 海里D.40 海里5. 如圖,正方形網(wǎng)格中的 ABC,若小方格邊長為 1,則 ABC是 ( )A. 直角三角形BB.銳角三角形CC.鈍角三角形AD.以上答案都不對6. 如果 Rt的兩直角邊長分別為 n2 1, 2n(其中 n >1 ),那么它的斜邊長是()A.2nB.n+1C.n2 1D.n2

18、+17.已知 Rt ABC中, C=90°,若 a+b=14cm,c=10cm,則 RtABC的面積是()A.24cm2B.36cm2C.48cm 2D.60cm28.等腰三角形底邊長10 cm,腰長為 13,則此三角形的面積為()A.40B.50C.60D.709. 三角形的三邊長為( a+b) 2=c2+2ab, 則這個三角形是 ( )A. 等邊三角形 ;B. 鈍角三角形 ;C.直角三角形 ;D.銳角三角形10. 已知,如圖,長方形 ABCD中,AB=3,AD=9,將此長方形折疊,使點 B 與點 D重合,折痕為 EF,則 ABE的面積為()EDAA.6B.8C.10D.12BFC

19、第 10題圖二、填空題11. 在 Rt ABC中, C=90°,若 a=5,b=12,則 c=_;若 a=15,c=25,則 b=_;若 c=61,b=60,則 a=_;若 ab=34, c=10 則 SRt ABC=_12. 在 ABC中,AC=17cm,BC=10 cm,AB=9cm,這是一個 _三角形(按角分)。13. 直角三角形兩直角邊長分別為 5 和 12,則它斜邊上的高為 _14. 在平靜的湖面上, 有一支紅蓮,高出水面 1 米,陣風(fēng)吹來,紅蓮被吹到一邊,花朵齊及水面,已知紅蓮移動的水平距離為2 米,問這里水深是 _m。15. 已知兩條較短線段的長為 5cm和 12cm,當較長線段的長為 _cm時,這三條線段能組成一個直角三角形 .三、解答題16. 一個三角形三條邊的比為51213,且周長為 60cm,求它的面積 .17. 某鎮(zhèn)為響應(yīng)中央關(guān)于建設(shè)社會主義新農(nóng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論