Course Outline_第1頁
Course Outline_第2頁
Course Outline_第3頁
Course Outline_第4頁
Course Outline_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、Digital Circuits3-1卡諾圖卡諾圖卡諾圖是化簡布林表示式的方法??ㄖZ圖是化簡布林表示式的方法。目的是減少數(shù)位系統(tǒng)中邏輯閘數(shù)目目的是減少數(shù)位系統(tǒng)中邏輯閘數(shù)目。Gate-level minimizationDigital Circuits3-2BBAF簡化BAFDigital Circuits3-3BAFBAAF用最少數(shù)目的邏輯閘建構(gòu)下列布林函數(shù)ABBAF一個2輸入的NAND gate需要 2個Inverter和一個2輸入的OR gate ?Digital Circuits3-4CBACBAF上式還能再簡化嗎?CBAF布林代數(shù)運算容易嗎?Digital Circuits3-5n寫出

2、F1及F2的真值表CBACBAF1CBAF2Digital Circuits3-6CBACBABABCBABABACBABACBACBAF)()()(Digital Circuits3-7CBACBAF1寫出F1的標準SOP表示式)7 , 5 , 3 , 2 , 1 ()()()(1mCBAABCCBABCACBACBACBAABCCBABCACBACBAACBBACCBACBACBAFDigital Circuits3-8CBAF2寫出F2的標準SOP表示式)7 , 5 , 3 , 2 , 1 ()()()()(1mABCCBACBABCACBAABCCBABCACBABCACBACBBAC

3、BBABCACBAACCABCACBACAACCBACBAFDigital Circuits3-9CBACBAF1寫出F1的標準POS表示式)()()6 , 4 , 0()7 , 5 , 3 , 2 , 1 ()()()(1CBACBACBAMmCBAABCCBABCACBACBACBAABCCBABCACBACBAACBBACCBACBACBAFDigital Circuits3-10CBAF2寫出F2的標準POS表示式)0 , 4 , 6()()()()()()()()()(1MCBACBACBACBABCABCACBACBABCABCACBAABBCACBCACBAFDigital Ci

4、rcuits3-11以布林代數(shù)簡化,常發(fā)生未達最簡式CBACBACBABACBAAABACBAABACBAACBAF)()()(CBAACBAFCBACAABAACCABAACCBAACCBBBAACCBBACBAACBAF)()()()(Digital Circuits3-12nGate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.Digital Cir

5、cuits3-13The Map MethodnThe complexity of the digital logic gates nthe complexity of the algebraic expressionnLogic minimizationnalgebraic approaches: lack specific rulesnthe Karnaugh mapna simple straight forward procedurena pictorial form of a truth tablenapplicable if the # of variables F: produc

6、t of sumsnApproach #2: dualityncombinations of maxterms (it was minterms)nM0M1 = (A+B+C+D)(A+B+C+D)= (A+B+C)+(DD)= A+B+CCDAB0001111000M0M1M3M201M4M5M7M611M12M13M15M1410M8M9M11M10Digital Circuits3-34nExample 3-8nF = S(0,1,2,5,8,9,10)nF = AB+CD+BDnApply DeMorgans theorem; F=(A+B)(C+D)(B+D)nOr think in

7、 terms of maxtermsDigital Circuits3-35nGate implementation of the function of Example 3-8Digital Circuits3-36nConsider the function defined in Table 3.2.( , , )(1,3,4,6)F x y z In sum-of-minterm:( , , )(0,2,5,7)F x y z In sum-of-maxterm:Taking the complement of F( , , )()()F x y zxzxzDigital Circuit

8、s3-37nConsider the function defined in Table 3.2.( , , )F x y zx zxzCombine the 1s:( , , )F x y zxzx z Combine the 0s :Digital Circuits3-383-6 Dont-Care ConditionsnThe value of a function is not specified for certain combinations of variablesnBCD; 1010-1111: dont carenThe dont care conditions can be

9、 utilized in logic minimizationncan be implemented as 0 or 1nExample 3-9nF (w,x,y,z) = S(1,3,7,11,15)nd(w,x,y,z) = S(0,2,5)Digital Circuits3-39nF = yz + wx; F = yz + wznF = S(0,1,2,3,7,11,15) ; F = S(1,3,5,7,11,15)neither expression is acceptablenAlso apply to products of sumDigital Circuits3-40nTwo graphic symbols for a NAND gateDigital Circuits3-41Two-level

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論