電動汽車傳動系統(tǒng)_第1頁
電動汽車傳動系統(tǒng)_第2頁
電動汽車傳動系統(tǒng)_第3頁
電動汽車傳動系統(tǒng)_第4頁
電動汽車傳動系統(tǒng)_第5頁
已閱讀5頁,還剩55頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、4.4.4 差速器設(shè)計 車輛在行駛過程中,左、右車輪在同一時間內(nèi)所滾過的路程往往是不相等的,如轉(zhuǎn)彎、左右兩輪胎內(nèi)的氣壓不等、胎面磨損不均勻、兩車輪上的負荷不均勻而引起車輪滾動半徑不相等;左右兩輪接觸的路面條件不同,行駛阻力不等等。 如果驅(qū)動橋的左、右車輪剛性連接,則不論轉(zhuǎn)彎行駛或直線行駛,均會引起車輪在路面上的滑移或滑轉(zhuǎn),一方面會加劇輪胎磨損、功率和燃料消耗,另一方面會使轉(zhuǎn)向沉重,通過性和操縱穩(wěn)定性變壞。 為此,在驅(qū)動橋的左、右車輪間都裝有輪間差速器。在多橋驅(qū)動的汽車上還常裝有軸間差速器,以提高通過性,同時避免在驅(qū)動橋間產(chǎn)生功率循環(huán)及由此引起的附加載荷、傳動系零件損壞、輪胎磨損和燃料消耗等。

2、差速器用來在兩輸出軸間分配轉(zhuǎn)矩,并保證兩輸出軸有可能以不同角速度轉(zhuǎn)動。差速器按其結(jié)構(gòu)特征可分為齒輪式、凸輪式、蝸輪式和牙嵌自由輪式等多種形式。 一、差速器結(jié)構(gòu)形式選擇 (一)對稱錐齒輪式差速器 汽車上廣泛采用的差速器為對稱錐齒輪式差速器,具有結(jié)構(gòu)簡單、質(zhì)量較小等優(yōu)點,應(yīng)用廣泛。它又可分為普通錐齒輪式差速器、摩擦片式差速器和強制鎖止式差速器等。 1普通錐齒輪式差速器 由于普通錐齒輪式差速器結(jié)構(gòu)簡單、工作平穩(wěn)可靠,所以廣泛應(yīng)用于一般使用條件的汽車驅(qū)動橋中。圖426為其示意圖, 根據(jù)運動分析可得 1+ 2=2 0 (422) 當(dāng)一側(cè)半軸不轉(zhuǎn)時,另一側(cè)半軸將以兩倍的差連器殼體角速度旋轉(zhuǎn);當(dāng)差速器殼體不

3、轉(zhuǎn)時,左右半軸將等速反向旋轉(zhuǎn)。 圖426 普通錐齒輪式差速器示意圖 根據(jù)力矩平衡可得 T1+T2=T0 (423) T2-T1=Tr 差速器性能常以鎖緊系數(shù)k來表征,定義為差速器的內(nèi)摩擦力矩與差速器殼接受的轉(zhuǎn)矩之比,由下式確定 k=TrT0 (424) 結(jié)合式(4-23)可得 T1=05T0(1-k) (425) T2=05T0(1+k) 定義半軸轉(zhuǎn)矩比kb=T2T1,則kb與k之間有 kb=(1+k)/(1-k) (426) 普通錐齒輪差速器的鎖緊系數(shù)k一般為0.050.15,兩半軸轉(zhuǎn)矩比kb為1.111.35,這說明左、右半軸的轉(zhuǎn)矩差別不大,故可以認為分配給兩半軸的轉(zhuǎn)矩大致相等,這樣的分配

4、比例對于在良好路面上行駛的汽車來說是合適的。但當(dāng)汽車越野行駛或在泥濘、冰雪路面上行駛,一側(cè)驅(qū)動車輪與地面的附著系數(shù)很小時,盡管另一側(cè)車輪與地面有良好的附著,其驅(qū)動轉(zhuǎn)矩也不得不隨附著系數(shù)小的一側(cè)同樣地減小,無法發(fā)揮潛在牽引力,以致汽車停駛。圖4-27 摩擦片式差速器1-差速器殼 2-摩擦片 3-壓盤 4-V形面 5-行星齒輪軸 6-行星齒輪 7-半軸齒輪2. 摩擦片式差速器 為了增加差速器的內(nèi)摩擦力矩,在半軸齒輪7與差速器殼1之間裝上了摩擦片2(圖4-27)。兩根行星齒輪軸5互相垂直,軸的兩端制成V形面4與差速器殼孔上的V形面相配,兩個行星齒輪軸5的V形面是反向安裝的。每個半軸齒輪背面有壓盤3和

5、主、從動摩擦片2,主、從動摩擦片2分別經(jīng)花鍵與差速器殼1和壓盤3相連。 當(dāng)傳遞轉(zhuǎn)矩時,差速器殼通過斜面對行星齒輪軸產(chǎn)生沿行星齒輪軸線方向的軸向力,該軸向力推動行星齒輪使壓盤將摩擦片壓緊。當(dāng)左、右半軸轉(zhuǎn)速不等時,主、從動摩擦片間產(chǎn)生相對滑轉(zhuǎn),從而產(chǎn)生摩擦力矩。此摩擦力矩Tr與差速器所傳遞的轉(zhuǎn)矩T0成正比??杀硎緸?(427)式中,rf為摩擦片平均摩擦半徑;rd為差速器殼v形面中點到半軸齒輪中心線的距離;f為摩擦因數(shù);z為摩擦面數(shù);為V形面的半角。 摩擦片式差速器的鎖緊系數(shù)k可達06,kb可達4。這種差速器結(jié)構(gòu)簡單,工作平穩(wěn),可明顯提高汽車通過性。tan0fzrrTTdfr 3強制鎖止式差速器 當(dāng)

6、一個驅(qū)動輪處于附著系數(shù)較小的路面時,可通過液壓或氣動操縱,嚙合接合器(即差速鎖)將差速器殼與半軸鎖緊在一起,使差速器不起作用,這樣可充分利用地面的附著系數(shù),使?fàn)恳_到可能的最大值。使用中,在汽車進入難行駛路段之前操縱差速鎖鎖止差速器;在駛出難行駛路段剛進入較好路段時,應(yīng)及時將差速鎖松開,以避免出現(xiàn)因無差速作用帶來的不良后果。 對于裝有強制鎖止式差速器的4x2型汽車,假設(shè)一驅(qū)動輪行駛在低附著系數(shù)min的路面上,另一驅(qū)動輪行駛在高附著系數(shù)的路面上,這樣裝有普通錐齒輪差速器的汽車所能發(fā)揮的最大牽引力Ft為 (428)式中,G2為驅(qū)動橋上的負荷。 如果差速器完全鎖住,則汽車所能發(fā)揮的最大牽引力Ft為

7、 (429) 可見,采用差速鎖將普通錐齒輪差速器鎖住,可使汽車的牽引力提高(+ min)/2min倍,從而提高了汽車通過性。 當(dāng)然,如果左、右車輪都處于低附著系數(shù)的路面,雖鎖住差速器,但牽引力仍超過車輪與地面間的附著力,汽車也無法行駛。 min2min2min222GGGFt)(222min2min22GGGFt 強制鎖止式差速器可充分利用原差速器結(jié)構(gòu),其結(jié)構(gòu)簡單,操作方便。目前,許多使用范圍比較廣的重型貨車上都裝用差速鎖。 (二)滑塊凸輪式差速器 圖428為雙排徑向滑塊凸輪式差速器。 差速器的主動件是與差速器殼1連接在一起的套,套上有兩排徑向孔,滑塊2裝于孔中并可作徑向滑動;滑塊兩端分別與差

8、速器的從動元件內(nèi)凸輪4和外凸輪3接觸。內(nèi)、外凸輪分別與左、右半軸用花健連接。當(dāng)差速器傳遞動力時,主動套帶動滑塊并通過滑塊帶動內(nèi)、外凸輪旋轉(zhuǎn),同時允許內(nèi)、外凸輪轉(zhuǎn)速不等。理論上凸輪形線應(yīng)是阿基米德螺線,為加工簡單起見,可用圓弧曲線代替。 圖4-28 滑塊凸輪式差速器1-差速器殼 2-滑塊 3-外凸輪 4-內(nèi)凸輪 (三)蝸輪式差速器 蝸輪式差速器(圖429)也是一種高摩擦自鎖差速器。蝸桿2、4同時與行星蝸輪3與半軸蝸輪1、5嚙合,從而組成一行星齒輪系統(tǒng)。這種差速器半軸的轉(zhuǎn)矩比為kb=tan(+ )/tan(-) (4-30) 式中, 為蝸桿螺旋角; 為摩擦角。 蝸輪式差速器的半軸轉(zhuǎn)矩比kb可高達5

9、.679.00,鎖緊系數(shù)k達0.70.80但在如此高的內(nèi)摩擦情況下,差速器磨損快、壽命短。當(dāng)把kb降到2.653.00,k降到0.450.50時,可提高該差速器的使用壽命。由于這種差速器結(jié)構(gòu)復(fù)雜,制造精度要求高,因而限制了它的應(yīng)用。圖4-29 蝸輪式差速器1、5-半軸蝸輪 2、4-蝸桿 9-行星蝸輪 (四)牙嵌式自由輪差速器 牙嵌式自由輪差速器(圖430)是自鎖式差速器的一種。裝有這種差速器的汽車在直線行駛時,主動環(huán)可將由主減速器傳來的轉(zhuǎn)矩按左、右輪阻力的大小分配給左、右從動環(huán)(即左、右半軸)。當(dāng)一側(cè)車輪懸空或進入泥濘、冰雪等路面時,主動環(huán)的轉(zhuǎn)矩可全部或大部分分配給另一側(cè)車輪。當(dāng)轉(zhuǎn)彎行駛時,外

10、側(cè)車輪有快轉(zhuǎn)的趨勢,使外側(cè)從動環(huán)與主動環(huán)脫開,即中斷對外輪的轉(zhuǎn)矩傳遞;內(nèi)側(cè)車輪有慢轉(zhuǎn)的趨勢,使內(nèi)側(cè)從動環(huán)與主動環(huán)壓得更緊,即主動環(huán)轉(zhuǎn)矩全部傳給內(nèi)輪。由于該差速器在轉(zhuǎn)彎時是內(nèi)輪單邊傳動,會引起轉(zhuǎn)向沉重,當(dāng)拖帶掛車時尤為突出。此外,由于左、右車輪的轉(zhuǎn)矩時斷時續(xù),車輪傳動裝置受的動載荷較大,單邊傳動也使其受較大的載荷。 牙嵌式自由輪差速器的半軸轉(zhuǎn)矩比kb是可變的,最大可為無窮大。該差速器工作可靠,使用壽命長,鎖緊性能穩(wěn)定,制造加工也不復(fù)雜。圖430牙嵌式自由輪差速器 二、普通錐齒輪差速器齒輪設(shè)計 (一)差速器齒輪主要參數(shù)選擇 1行星齒輪數(shù)n 行星齒輪數(shù)n需根據(jù)承載情況來選擇。通常情況下,轎車:n=2

11、;貨車或越野車 n=4。 2行星齒輪球面半徑Rb 行星齒輪球面半徑Rb反映了差速器錐齒輪節(jié)錐距的大小和承載能力,可根據(jù)經(jīng)驗公式來確定 (431)式中,Kb為行星齒輪球面半徑系數(shù),Kb=2.53.0,對于有四個行星齒輪的轎車和公路用貨車取小值,對于有兩個行星齒輪的轎車及四個行星齒輪的越野車和礦用車取大值;Td為差速器計算轉(zhuǎn)矩(Nm),Td=minTce,Tcs;Rb為球面半徑(mm)。3dbbTKR 行星齒輪節(jié)錐距A0為 A0=(0.980.99)Rb (432) 3行星齒輪和半軸齒輪齒數(shù)z1、z2 為了使輪齒有較高的強度,希望取較大的模數(shù),但尺寸會增大,于是又要求行星齒輪的齒數(shù)z1應(yīng)取少些,但

12、z1一般不少于10。半軸齒輪齒數(shù)z2在1425選用。大多數(shù)汽車的半軸齒輪與行星齒輪的齒數(shù)比z2z1在1520的范圍內(nèi)。 為使兩個或四個行星齒輪能同時與兩個半軸齒輪嚙合,兩半軸齒輪齒數(shù)和必須能被行星齒輪數(shù)整除,否則差速齒輪不能裝配。 4行星齒輪和半軸齒輪節(jié)錐角1、2,及模數(shù)m 行星齒輪和半軸齒輪節(jié)錐角1、2分別為 1=arctan(z1z2) (4-33) 2 =arctan(z2z2) 錐齒輪大端端面模數(shù)m為 m=2A0 sin 1 /z1=2A0sin 2 /z2 (4-34)5壓力角a 汽車差速齒輪大都采用壓力角為2230,齒高系數(shù)為0.8的齒形。某些重型貨車和礦用車采用25壓力角,以提高

13、齒輪強度。6行星齒輪軸直徑d及支承長度L 行星齒輪軸直徑d(mm)為 (4-35)式中,T0為差速器殼傳遞的轉(zhuǎn)矩(Nm),n為行星齒輪數(shù);rd為行星齒輪支承面中點到錐頂?shù)木嚯x(mm),約為半軸齒輪齒寬中點處平均直徑的一半;c為支承面許用擠壓應(yīng)力,取98MPa。 行星齒輪在軸上的支承長度L為 L=1.1d (436)dcnrTd 1 . 11030 (二)差速器齒輪強度計算 差速器齒輪的尺寸受結(jié)構(gòu)限制,而且承受的載荷較大,它不像主減速器齒輪那樣經(jīng)常處于嚙合傳動狀態(tài),只有當(dāng)汽車轉(zhuǎn)彎或左、右輪行駛不同的路程時,或一側(cè)車輪打滑而滑轉(zhuǎn)時,差速器齒輪才能有嚙合傳動的相對運動。因此,對于差速器齒輪主要應(yīng)進行

14、彎曲強度計算。輪齒彎曲應(yīng)力w(Mpa)為 (437)式中,n為行星齒輪數(shù);J為綜合系數(shù);b2、d2分別為半軸齒輪齒寬及其大端分度圓直徑(mm);T為半軸齒輪計算轉(zhuǎn)矩(Nm),T=0.6T0;322102JndmbkkTkvmsw按主減速器齒輪強度計算的有關(guān)數(shù)值選取。 當(dāng)T0=minTce,Tcs時,w =980MPa;當(dāng)T0=TcF時,w=210MPa。 差速器齒輪與主減速器齒輪一樣,基本上都是用滲碳合金鋼制造,目前用于制造差速器錐齒輪的材料為20CrMnTi、20CrMoTi、22CrMnMo和20CrMo等。由于差速器齒輪輪齒要求的精度較低,所以精鍛差速器齒輪工藝巳被廣泛應(yīng)用。三、粘性聯(lián)軸

15、器結(jié)構(gòu)及在汽車上的布置 粘性聯(lián)軸器是一種利用液體粘性傳遞動力的裝置。它以其優(yōu)良的性能不僅廣泛應(yīng)用于四輪驅(qū)動汽車上,而且也應(yīng)用于兩輪驅(qū)動汽車上。 1粘性聯(lián)軸器結(jié)構(gòu)和工作原理 粘性聯(lián)軸器結(jié)構(gòu)簡圖如圖431所示。內(nèi)葉片2與A軸1以花鍵連接,葉片可在軸上滑動;外葉片6與殼體3也以花鍵連接,但葉片內(nèi)有隔環(huán)7,防止外葉片軸向移動。隔環(huán)的厚度決定了內(nèi)、外葉片的間隙。葉片上各自加工有孔或槽,殼體內(nèi)充入作為粘性工作介質(zhì)的硅油4,用油封密封。 圖4-31 粘性聯(lián)軸器結(jié)構(gòu)簡圖 1- A軸 2-內(nèi)葉片 3-殼體 4-硅油 5-B軸 6-外葉片 7-隔環(huán) 粘性聯(lián)軸器屬于液體粘性傳動裝置,是依靠硅油的粘性阻力來傳遞動力,

16、即通過內(nèi)、外葉片間硅油的油膜剪切力來傳遞動力。一般在密封的殼體內(nèi)填充了占其空間80一90%的硅油(其余是空氣),高粘度的硅油存在于內(nèi)、外葉片的間隙內(nèi)。當(dāng)A軸與B軸之間有轉(zhuǎn)速差時,內(nèi)、外葉片間將產(chǎn)生剪切阻力,使轉(zhuǎn)矩由高速軸傳遞到低速軸。它所能傳遞的轉(zhuǎn)矩與聯(lián)軸器的結(jié)構(gòu)、硅油粘度及輸入軸、輸出軸的轉(zhuǎn)速差有關(guān)。 2粘性聯(lián)軸器在車上的布置 根據(jù)全輪驅(qū)動形式的不同,粘性聯(lián)軸器在汽車上有不同的布置形式。 圖432為粘性聯(lián)軸器作為軸間差速器限動裝置的簡圖。軸間差速器殼體上的齒輪1與變速器輸出軸上的齒輪相嚙合,殼體內(nèi)的左齒輪通過空心軸2與右側(cè)的前橋差速器6殼體相連,右齒輪通過空心軸4和齒輪7等與后橋差速器殼上的

17、齒輪相連。粘性聯(lián)軸器5的殼體與空心軸4相連,內(nèi)葉片連接在空心軸2上,這樣它就與軸間差速器3并聯(lián)在一起,內(nèi)、外葉片的轉(zhuǎn)速分別反映了前、后差速器殼體的轉(zhuǎn)速。圖432 粘性聯(lián)軸器用作軸間差速器的限動裝置 1-齒輪(與變速器軸出軸上的齒輪相嚙合) 2、4-空心軸 3-軸間差速器 5-粘性聯(lián)軸器 6-前橋差速器 7-齒輪 8-錐齒輪(通向后橋) 當(dāng)前、后橋差速器殼體轉(zhuǎn)速相近時,粘性聯(lián)軸器內(nèi)、外葉片轉(zhuǎn)速相近,它并不起限動作用,此時軸間差速器將轉(zhuǎn)矩按固定比例分配給前、后橋。當(dāng)某一車輪(如前輪)嚴(yán)重打滑時,前橋差速器殼的轉(zhuǎn)速升高,粘性聯(lián)軸器的內(nèi)、外葉片轉(zhuǎn)速差增大,阻力矩增大,軸間差速器中與后橋相連的轉(zhuǎn)速較低的

18、齒輪就獲得了較大的轉(zhuǎn)矩,使附著條件較好的后輪產(chǎn)生與附著條件相適應(yīng)的較大的驅(qū)動力。 在有些汽車中,用粘性聯(lián)軸器取代了軸間差速器。當(dāng)汽車正常行駛時,前、后輪轉(zhuǎn)速基本相等,粘性聯(lián)軸器不工作,此時相當(dāng)于前輪驅(qū)動。當(dāng)汽車加速或爬坡時,汽車質(zhì)心后移,的輪將出現(xiàn)打滑現(xiàn)象,轉(zhuǎn)速升高,前、后輪出現(xiàn)轉(zhuǎn)速差,粘性聯(lián)軸器開始工作,將部分轉(zhuǎn)矩傳給后橋,使之產(chǎn)生足夠驅(qū)動力幫助前輪恢復(fù)正常的附著狀態(tài),提高了它的動力性。由于粘性傳動不如機械傳動可靠,所能傳遞的轉(zhuǎn)矩較小,故該形式主要用于轎車和輕型汽車中。車輪傳動裝置設(shè)計 車輪傳動裝置位于傳動系的末端,其基本功用是接受從差速器傳來的轉(zhuǎn)矩并將其傳給車輪。對于非斷開式驅(qū)動橋,車輪傳

19、動裝置的主要零件為半軸;對于斷開式驅(qū)動橋和轉(zhuǎn)向驅(qū)動橋(圖433),車輪傳動裝置為萬向傳動裝置。講述半軸的設(shè)計。 一、結(jié)構(gòu)形式分析 半軸根據(jù)其車輪端的支承方式不同,可分為半浮式、34浮式和全浮式三種形式。 半浮式半軸(圖434a)的結(jié)構(gòu)特點是半軸外端支承軸承位于半軸套管外端的內(nèi)孔,車輪裝在半軸上。半浮式半軸除傳遞轉(zhuǎn)矩外,其外端還承受由路面對 圖433 轉(zhuǎn)向驅(qū)動橋1輪轂 2-輪轂軸承 3-制動鼓 4-固定彈簧 5-等速萬向節(jié) 車輪的反力所引起的全部力和力矩。半浮式半軸結(jié)構(gòu)簡單,所受載荷較大,只用于轎車和輕型貨車及輕型客車上。 34浮式半軸(圖437b)的結(jié)構(gòu)特點是半軸外端僅有一個軸承并裝在驅(qū)動橋殼

20、半軸套管的端部,直接支承著車輪輪轂,而半軸則以其端部凸緣與輪轂用螺釘聯(lián)接。該形式半軸受載情況與半浮式相似,只是載荷有所減輕,一般僅用在轎車和輕型貨車上。全浮式半軸(圖437c)的結(jié)構(gòu)特點是半軸外端的凸緣用螺釘與輪轂相聯(lián),而輪轂又借用兩個圓錐滾子軸承支承在驅(qū)動橋殼的半軸套管上。理論上來說,半軸只承受轉(zhuǎn)矩,作用于驅(qū)動輪上的其它反力和彎矩全由橋殼來承受。但由于橋殼變形、輪轂與差速器半軸齒輪不同心、半軸法蘭平面相對其軸線不垂直等因素,會引起半軸的彎曲變形,由此引起的彎曲應(yīng)力一般為570MPa。全浮式半軸主要用于中、重型貨車上。 圖4-34 半軸結(jié)構(gòu)形式簡圖及受力情況 a)半浮式 b)34浮式 c)全浮

21、式二、半軸計算 1全浮式半軸 全浮式半軸的計算載荷可按車輪附著力矩M。計算 (438)式中,G2為驅(qū)動橋的最大靜載荷;rr為車輪滾動半徑;m2為負荷轉(zhuǎn)移系數(shù);為附著系數(shù),計算時 i取0.8。 半軸的扭轉(zhuǎn)切應(yīng)力為 (4-39)式中, 為半軸扭轉(zhuǎn)切應(yīng)力;d為半軸直徑。 rrGmM2221316dM半軸的扭轉(zhuǎn)角為 (4-40 )式中,為扭轉(zhuǎn)角;l為半軸長度;G為材料剪切彈性模量;Ip為半軸斷面極慣性矩,Ip= d432。 半軸的扭轉(zhuǎn)切應(yīng)力宜為500700MPa,轉(zhuǎn)角宜為每米長度615。GIlM1802半浮式半軸 半浮式半軸設(shè)計應(yīng)考慮如下三種載荷工況: (1)縱向力Fx2最大,側(cè)向力Fy2為0,此時垂

22、向力Fz2=m2G22,縱向力最大值Fx2= Fz2 =m2G2 2 ,計算時,m2可取12, 取08。 半軸彎曲應(yīng)力。和扭轉(zhuǎn)切應(yīng)力 為 (441) 式中,a為輪轂支承軸承到車輪中心平面之間的距離,如圖4-34所示。 32322221632drFdFFarxzx合成應(yīng)力 (4-42) (2)側(cè)向力Fy2最大,縱向力Fx2=0,此時意味著發(fā)生側(cè)滑;外輪上的垂直反力Fz20和內(nèi)輪上的垂直反力Fz2i分別為 (443)式中,hg為汽車質(zhì)心高度;B2為輪距; 1為側(cè)滑附著系數(shù),計算時1可取10。 外輪上側(cè)向力Fy20和內(nèi)輪上側(cè)向力Fy2i分別為 (444)224h202221220)/5 . 0(zi

23、zgzFGFBhGF1221220iziyozyFFFF內(nèi)、外車輪上的總側(cè)向力Fy2為G2 1 。 這樣,外輪半軸的彎曲應(yīng)力o和內(nèi)輪半軸的彎曲應(yīng)力i分別為 (445)32232020)(32)(32daFrFdaFrFizriyizryo(3)汽車通過不平路面,垂向力Fz2最大,縱向力Fx2=0,側(cè)向力Fy2=0;此時垂直力最大值Fz2為: Fz2=kG2/2 (450)式中,k為動載系數(shù),轎車:k=1.75,貨車:k=2.0,越野車:k=2.50 半軸彎曲應(yīng)力為 (446) 半浮式半軸的許用合成應(yīng)力為600750MPa。 32321632dakGdaFz334浮式半軸 34浮式半軸計算與半浮

24、式類似,只是半軸的危險斷面不同,危險斷面位于半軸與輪轂相配表面的內(nèi)端。 半軸和半軸齒輪一般采用漸開線花健連接,對花鍵應(yīng)進行擠壓應(yīng)力和鍵齒切應(yīng)力驗算擠壓應(yīng)力不大于200MPa,切應(yīng)力不大于73MPa。 三、半軸可靠性設(shè)計 在汽車設(shè)計中,可靠性已成為比較重要的技術(shù)指標(biāo)之一。對于產(chǎn)品設(shè)計,須考慮各參量的統(tǒng)計分散性,進行隨機不確定分析,真實正確地反映產(chǎn)品的強度與受載等情況。 1可靠度計算 對于全浮式半軸來說,所受的扭轉(zhuǎn)切應(yīng)力按下式計算 (447) 式中,T為半軸所傳遞的轉(zhuǎn)矩;d為半軸的直徑。 316dT根據(jù)二階矩技術(shù),以應(yīng)力極限狀態(tài)表示的狀態(tài)方程為 (448) 式中,r為半軸材料的扭轉(zhuǎn)強度;X為基本隨

25、機變量矢量:X=(r,T,d)。 設(shè)基本隨機變量矢量X的均值E(X)=(r, T, d)T,方差D(X)= (r2,0,0,0, r2,0,0,0, d2,0,0,0)T ,且認為這些隨機變量是服從正態(tài)分布的相互獨立的隨機變量。g(X)是反映半軸狀態(tài)和性能的狀態(tài)函數(shù),可表示半軸的兩種狀態(tài): g(X)0 失敗狀態(tài) g(X)0 安全狀態(tài)316)(dTrXg 將g(X)在均值E(X)= 處展開成二階泰勒級數(shù),可得到g(X)的二階近似均值g和一階近似方差g2 (4-49) 不論g(X)服從什么分布,可靠性指標(biāo)定義為 =g / g (450) 可靠度的一階估計量為 R=() (451)式中,( )為標(biāo)準(zhǔn)

26、正態(tài)分布函數(shù)。 X)()()()()(21)()(222XDXXgXgDXDXXgXgXgETgTg 2可靠性設(shè)計 給定半軸可靠度R,查表得可靠性指標(biāo) ,由式(449)經(jīng)推導(dǎo)整理得 (4-52)式中 根據(jù)加工誤差和3法則,取半軸直徑標(biāo)準(zhǔn)差d為0.005倍的半軸直徑均值d,求解式(452)即可求得半軸的最小直徑的均值d和標(biāo)準(zhǔn)差d。 02)(2236222BAAdrdrr222222)005. 0(2304256;)005. 0(9616TTTTBA四、半軸的結(jié)構(gòu)設(shè)計 對半軸進行結(jié)構(gòu)設(shè)計時,應(yīng)注意如下幾點; 1)全浮式半軸桿部直徑可按下式初步選取 (4-53)式中,d為半軸桿部直徑(mm);M 為

27、半軸計算轉(zhuǎn)矩(Nmm),按式(442)計算;K為直徑系數(shù),取0.2050.218。 根據(jù)初選的d,按前面的應(yīng)力公式進行強度校核。 2)半軸的桿部直徑應(yīng)小于或等于半軸花鍵的底徑,以便使半軸各部分達到基本等強度。 3MKd 3)半軸的破壞形式大多是扭轉(zhuǎn)疲勞損壞,在結(jié)構(gòu)設(shè)計時應(yīng)盡量增大各過渡部分的圓角半徑,尤其是凸緣與桿部、花鍵與桿部的過渡部分,以減小應(yīng)力集中。 4)對于桿都較粗且外端凸緣也較大時,可采用兩端用花健連接的結(jié)構(gòu)。 5)設(shè)計全浮式半軸桿部的強度儲備應(yīng)低于驅(qū)動橋其它傳力零件的強度儲備,使半軸起一個“熔絲”的作用。半浮式半軸直接安裝車輪,應(yīng)視為保安件。 4.4.6 驅(qū)動橋殼設(shè)計 驅(qū)動橋殼的主

28、要功用是支承汽車質(zhì)量,并承受由車輪傳來的路面反力和反力矩,并經(jīng)懸架傳給車架(或車身);它又是主減速器、差速器、半軸的裝配基體。 驅(qū)動橋殼應(yīng)滿足如下設(shè)計要求: 1)應(yīng)具有足夠的強度和剛度,以保證主減速器齒輪嚙合正常并不使半軸產(chǎn)生附加彎曲應(yīng)力。 2)在保證強度和剛度的前提下,盡量減小質(zhì)量以提高汽車行駛平順性。 3)保證足夠的離地間隙。 4)結(jié)構(gòu)工藝性好,成本低。 5)保護裝于其上的傳動系部件和防止泥水浸入。 6)拆裝、調(diào)整、維修方便。 一、驅(qū)動橋殼結(jié)構(gòu)方案分析 驅(qū)動橋殼大致可分為可分式、整體式和組合式三種形式。 1可分式橋殼 可分式橋殼(圖435)由一個垂直接合面分為左右兩部分,兩部分通過螺栓聯(lián)接

29、成一體。每一部分均由一鑄造殼體和一個壓入其外端的半軸套管組成,軸管與殼體用鉚釘連接。 這種橋殼結(jié)構(gòu)簡單,制造工藝性好,主減速器支承剛度好。但拆裝、調(diào)整、維修很不方便,橋殼的強度和剛度受結(jié)構(gòu)的限制,曾用于輕型汽車上,現(xiàn)已較少使用。 2整體式橋殼 整體式橋殼(圖4-36)的特點是整個橋殼是一根空心梁,橋殼和主減速器殼為兩體。它具有強度和剛度較大,主減速器拆裝、調(diào)整方便等優(yōu)點。 按制造工藝不同,整體式橋殼可分為鑄造式(圖436a)、鋼板沖壓焊接式(圖436b)和擴張成形式三種。 圖4-36 整體式橋殼a)鑄造式 b)鋼板沖壓焊接式 鑄造式橋殼的強度和剛度較大,但質(zhì)量大,加工面多,制造工藝復(fù)雜,主要用

30、于中、重型貨車上。鋼板沖壓焊接式和擴張成形式橋殼質(zhì)量小,材料利用率高,制造成本低,適于大量生產(chǎn),廣泛應(yīng)用于轎車和中、小型貨車及部分重型貨車上。 3組合式橋殼 組合式橋殼(圖437)是將主減速器殼與部分橋殼鑄為一體,而后用無縫鋼管分別壓入殼體兩端,兩者間用塞焊或銷釘固定。它的優(yōu)點是從動齒輪軸承的支承剛度較好,主減速器的裝配、調(diào)整比可分式橋殼方便,然而要求有較高的加工精度,常用于轎車、輕型貨車中。 圖4-37 組合式橋殼 二、驅(qū)動橋殼強度計算 對于具有全浮式半軸的驅(qū)動橋,強度計算的載荷工況與半軸強度計算的三種載荷工況相同。圖438為驅(qū)動橋殼受力圖,橋殼危險斷面通常在鋼板彈簧座內(nèi)側(cè)附近,橋殼端部的輪

31、轂軸承座根部也應(yīng)列為危險斷面進行強度驗算。 (1) 當(dāng)牽引力或制動力最大時,橋殼鋼板彈簧座處危險斷面的彎曲應(yīng)力 和扭轉(zhuǎn)切應(yīng)力 分別為 (454) TThhvvWTWMWM)(式中,Mv為地面對車輪垂直反力在危險斷面引起的垂直平面內(nèi)的彎矩,Mv=m2 G2b2;b為輪胎中心平面到板簧座之間的橫向距離,如圖441所示;Mh為一側(cè)車輪上的牽引力或制動力Fx2在水平面內(nèi)引起的彎矩,Mh=Fx2 b;TT為牽引或制動時,上述危險斷面所受轉(zhuǎn)矩,TT=Fx2rr;Wv、Whh、WT分別為危險斷面垂直平面和水平面彎曲的抗彎截面系數(shù)及抗扭截面系數(shù)。 圖438 橋殼受力簡圖 (2)當(dāng)側(cè)向力最大時,橋殼內(nèi)、外板簧座處斷面的彎曲應(yīng)力i、 o分別為 (455)式中,F(xiàn)z2i、Fz2o為內(nèi)、外側(cè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論