




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、一、填空題1. 2. 已知,則_,_;3. 若,則(0) =_; 4. 設(shè)函數(shù)在上可導(dǎo),且,則 。5. _. 6. 若函數(shù) 在連續(xù),則 二、選擇題 1下列函數(shù)在給定區(qū)間上不滿足拉格朗日中值定理的有( )。A ; B. ; C ; D. 。2若函數(shù)在點處可導(dǎo),則( )是錯誤的 A函數(shù)在點處有定義 B,但 C函數(shù)在點處連續(xù) D函數(shù)在點處可微3設(shè)是可微函數(shù),則( ) A B C D4當(dāng);當(dāng),則點一定是函數(shù)的( )。A. 極大值點 B. 極小值點 C. 駐點 D.以上都不對5設(shè),則 ( )(A) 數(shù)列收斂; (B) ;(C) ; (D) 數(shù)列可能收斂,也可能發(fā)散。6設(shè),則是的 ( )(A) 連續(xù)點;
2、(B) 可去間斷點; (C) 跳躍間斷點; (D) 第二類間斷點。7若函數(shù)在上連續(xù),則( )(A) 在有界; (B) 在的任一閉區(qū)間上有界;(C) 在無界; (D) 在有界。8設(shè)是奇函數(shù),且,則 ( )(A) 是的極小值點; (B) 是的極大值點;(C) 在的切線平行于軸;(D) 在的切線不平行于軸。9設(shè)在可微,記,則當(dāng)時, ( )(A) 是的高階無窮?。?(B) 與是同階無窮??;(C) 與是等價無窮小; (D) 與不能比較。 三、解答題 1;2設(shè),求 3設(shè)為可導(dǎo)函數(shù),,求;4四、1. 設(shè),且已知,, 試求2. 設(shè),證明: 數(shù)列的極限存在并求其值。3. 設(shè),試問為何值時,方程存在正實根.五、1
3、. (1)若函數(shù)在上可導(dǎo),且,證明;(2)若函數(shù)在上可導(dǎo),且,證明:,(3)證明:對任意實數(shù),都有。2. 設(shè)函數(shù)連續(xù),問在什么條件下存在。六、 按函數(shù)作圖步驟,作函數(shù)的圖像。一、填空題 1. 2. ;3. 數(shù)集為(0,1)內(nèi)的無理數(shù),其上下確界分別為_ ;4. 數(shù)列的全體聚點為 ;5. 設(shè)函數(shù)在上可導(dǎo),且,則 6. _; 7 8. 設(shè)曲線 與曲線 相切,則 ;9 設(shè),則 ; 10. 若函數(shù) 在連續(xù),則 .二、選擇題 1. 設(shè) ,則當(dāng)時,與的差是( )(A)無窮小量 (B)任意小的正數(shù) (C)常量 (D) 給定的正數(shù)2. 設(shè)函數(shù)在內(nèi)連續(xù),且,則函數(shù)在 處( ).(A)取得極大值 (B)取得極小值
4、(C)一定有拐點 (D)可能有極值,也可能有拐點。3. 設(shè)是偶函數(shù),在0點可導(dǎo),則( )(A) 1 (B)-1 (C) 0 (D) 以上都不對.4. 函數(shù),則(A) 在任意區(qū)間a,b上羅爾定理成立;(B)在0,8上羅爾定理不成立;(C)在0,8上羅爾定理成立; (D)在任意閉區(qū)間上羅爾定理不成立.5. 函數(shù)在點處()(A)有定義且有極限; (B)無定義但有極限;(C)有定義但無極限; (D)無定義且無極限6. 設(shè),則是函數(shù)的 ( )(A) 連續(xù)點; (B) 跳躍間斷點; (C) 可去間斷點; (D) 第二類間斷點。7. 若函數(shù)在上連續(xù),則函數(shù)在 ( )(A) 有界;(B) 無界;(C) 有界
5、(D) 的任一閉區(qū)間上有界。8. 設(shè),則方程在上 ( )(A) 沒有根; (B) 最多有兩個根; (C) 有且僅有三個根; (D) 有四個根。9設(shè)在上二階可導(dǎo),且,則在上( )(A) 單調(diào)增; (B) 單調(diào)減; (C) 有極大值; (D) 有極小值。10設(shè)在上可導(dǎo),是的最大值點,則 ( )(A) ; (B) ;(C) 當(dāng)時; (D) 以上都不對。 三、解答題 .2. 設(shè),計算。3.已知 求和.4. 求極限 5. 求極限 . 6. 設(shè),計算。7. 求極限 ; 8. 求極限 四、1. 證明:當(dāng)時,。2. 設(shè).證明數(shù)列收斂,并求其極限.3. 按定義證明.4. 設(shè)在內(nèi)有二階導(dǎo)數(shù),且,有,證明:在 內(nèi)至少存在一點,使得:。5. 證明:當(dāng)時,。6 給定兩正數(shù)與(),作出其等差中項與等比中項,令,.證明: 與皆存在且相等。7 設(shè)為正數(shù),證明:方程在區(qū)間與內(nèi)各有一個根。8. 若在上連續(xù),在上可導(dǎo),證明:,使得:。五、1、設(shè)(1)證明:是的極小值點;(2)說明的極小值點處是否滿足極值的第一充分條件或第二充分條件。2、設(shè)函數(shù)在區(qū)間滿足利普希茨條件,即存在常數(shù),使得任意兩點都有 證明(1)函數(shù)在區(qū)間上一致連續(xù);(2)函數(shù)在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 泉州民盟經(jīng)費(fèi)管理辦法
- 法院辦案權(quán)限管理辦法
- 倫理評估實驗室行業(yè)市場調(diào)研報告摘要
- 注冊總監(jiān)分級管理辦法
- 瀘州戶外招牌管理辦法
- 測繪資質(zhì)機(jī)構(gòu)管理辦法
- 濟(jì)南大學(xué)旅游管理辦法
- 濟(jì)南教師績效管理辦法
- 海南停車收費(fèi)管理辦法
- 海南環(huán)衛(wèi)人員管理辦法
- 村產(chǎn)業(yè)道路修建方案
- 偽現(xiàn)金交易培訓(xùn)
- 全國職業(yè)院校技能大賽賽項規(guī)程(高職)(高職)化工生產(chǎn)技術(shù)
- 零工市場(驛站)運(yùn)營管理 投標(biāo)方案(技術(shù)方案)
- 殘疾人日常護(hù)理知識
- 2024-2030年全球及中國光學(xué)器件中的透鏡行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 《跨境直播運(yùn)營》課件-跨境直播的內(nèi)容組織
- KBR氣化爐-合成氨
- 某醫(yī)院WIFI覆蓋解決方案
- 五職礦長考試題庫學(xué)法規(guī)、抓落實、強(qiáng)管理題庫
-
評論
0/150
提交評論