




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、 高中數(shù)學必修2復習提綱第一章 空間幾何體1.1柱、錐、臺、球的結構特征1.2空間幾何體的三視圖和直觀圖1、 三視圖: 正視圖:從前往后; 側視圖:從左往右; 俯視圖:從上往下。2、 畫三視圖的原則: 長對齊、高對齊、寬相等3、直觀圖:斜二測畫法4、斜二測畫法的步驟:(1).平行于坐標軸的線依然平行于坐標軸; (2).平行于y軸的線長度變半,平行于x,z軸的線長度不變; (3).畫法要寫好。5 用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側棱(4)成圖1.3 空間幾何體的表面積與體積(一 )空間幾何體的表面積1、棱柱、棱錐的表面積: 各個面面積之和2、圓柱的表面積 3、圓錐的表
2、面積4、圓臺的表面積5、球的表面積(二)空間幾何體的體積1、柱體的體積 2、錐體的體積 3、臺體的體積 4、球體的體積 第二章 直線與平面的位置關系2.1空間點、直線、平面之間的位置關系1、平面含義:平面是無限延展的2、平面的畫法及表示DCBA (1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)(2)平面通常用希臘字母等表示,如平面、平面等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。3、三個公理:(1)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)符號表示為CBA
3、LA公理1作用:判斷直線是否在平面內(nèi)(2)公理2:過不在一條直線上的三點,有且只有一個平面。符號表示為:A、B、C三點不共線 = 有且只有一個平面,使公理2作用:確定一個平面的依據(jù)。PL(3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。符號表示為:公理3作用:判定兩個平面是否相交的依據(jù)2.1.2 空間中直線與直線之間的位置關系1、空間的兩條直線有如下三種關系:共面直線 相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點。2、公理4:平行于同一條直線的兩條直線互相平行。符號表示為:設a、b、
4、c是三條直線強調(diào):公理4實質(zhì)上是說平行具有傳遞性,在平面、空間這個性質(zhì)都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。3、等角定理:空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補4、注意點: 與所成的角的大小只由、的相互位置來確定,與的選擇無關, 為了簡便,點一般取在兩直線中的一條上; 兩條異面直線所成的角; 當兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直, 記作ab; 兩條直線互相垂直,有共面垂直與異面垂直兩種情形; 計算中,通常把兩條異面直線所成的角轉化為兩條相交直線所成的角。2.1.3 2.1.4 空間中直線與平面、平面與平面之間的位置關系1、直線與平面有三種
5、位置關系:(1)直線在平面內(nèi) 有無數(shù)個公共點(2)直線與平面相交 有且只有一個公共點(3)直線在平面平行 沒有公共點指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用來表示 2.2.直線、平面平行的判定及其性質(zhì)2.2.1 直線與平面平行的判定1、 直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。簡記為:線線平行,則線面平行。符號表示:2.2.2 平面與平面平行的判定1、兩個平面平行的判定定理:一個平面內(nèi)的兩條交直線與另一個平面平行,則這兩個平面平行。 符號表示:2、判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;(3)垂直于同一條直線的兩
6、個平面平行。2.2.3 2.2.4直線與平面、平面與平面平行的性質(zhì)1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。簡記為:線面平行則線線平行。符號表示:作用:利用該定理可解決直線間的平行問題。2、定理:如果兩個平面同時與第三個平面相交,那么它們的交線平行。符號表示: 作用:可以由平面與平面平行得出直線與直線平行2.3直線、平面垂直的判定及其性質(zhì)2.3.1直線與平面垂直的判定1、定義:如果直線L與平面內(nèi)的任意一條直線都垂直,我們就說直線L與平面互相垂直,記作L,直線L叫做平面的垂線,平面叫做直線L的垂面。如圖,直線與平面垂直時,它們唯一公共點P叫做垂足。L p
7、 2、判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。注意點:a)定理中的“兩條相交直線”這一條件不可忽視; b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想。2.3.2平面與平面垂直的判定1、二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形 A B 2、二面角的記法:二面角或3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。2.3.3 2.3.4直線與平面、平面與平面垂直的性質(zhì)1、定理:垂直于同一個平面的兩條直線平行。2、性質(zhì)定理: 兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。本章知識結構框
8、圖平面(公理1、公理2、公理3、公理4)空間直線、平面的位置關系平面與平面的位置關系直線與平面的位置關系直線與直線的位置關系第三章 直線與方程3.1直線的傾斜角和斜率3.1傾斜角和斜率1、直線的傾斜角的概念:當直線與軸相交時, 取軸作為基準, 軸正向與直線向上方向之間所成的角叫做直線的傾斜角.特別地,當直線與軸平行或重合時, 規(guī)定.2、 傾斜角的取值范圍:.當直線l與x軸垂直時, .3、直線的斜率:一條直線的傾斜角的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 當直線l與x軸平行或重合時, , ;當直線l與x軸垂直時, , 不存在.由此可知, 一條直線的傾斜角一定存在,但是斜率不一
9、定存在.4、 直線的斜率公式:給定兩點,用兩點的坐標來表示直線的斜率:斜率公式: 3.1.2兩條直線的平行與垂直1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即。注意: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結論并不成立即如果, 那么一定有。2、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負倒數(shù);反之,如果它們的斜率互為負倒數(shù),那么它們互相垂直,即。3.2.1 直線的點斜式方程1、 直線的點斜式方程:直線經(jīng)過點,且斜率為2、直線的斜截式方程:已知直線的斜率為,且與軸的交點為3.2.2 直線的兩
10、點式方程1、直線的兩點式方程:已知兩點其中2、直線的截距式方程:已知直線與軸的交點為A,與軸的交點為B,其中3.2.3 直線的一般式方程1、直線的一般式方程:關于的二元一次方程(A,B不同時為0)2、各種直線方程之間的互化。3.3直線的交點坐標與距離公式3.3.1兩直線的交點坐標1、給出例題:兩直線交點坐標L1:3x+4y-2=0L1:2x+y +2=0 解:解方程組 得 x=-2,y=2所以L1與L2的交點坐標為M(-2,2)3.3.2 兩點間距離兩點間的距離公式:3.3.3 點到直線的距離公式1點到直線距離公式:點到直線的距離為:2、兩平行線間的距離公式:已知兩條平行線直線和的一般式方程為
11、:,:,則與的距離就是在上任取一點,點P到的距離就是直線與之間的距離圓與方程4.1.1 圓的標準方程1、圓的標準方程:,圓心為A(a,b),半徑為r的圓的方程4.1.2 圓的一般方程1、圓的一般方程: 2、圓的一般方程的特點: (1)、和的系數(shù)相同,不等于0沒有xy這樣的二次項 (2)、圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了 (3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯。4.2.1 圓與圓的位置關系1、用點到直線的距離來判斷直線與圓的位置關系設直線:,圓:,圓的半徑為,圓心到直線的距離為,則判別直線與圓的位置關系的依據(jù)有以下幾點:(1)當時,直線與圓相離;(2)當時,直線與圓相切;(3)當時,直線與圓相交;4.2.2 圓與圓的位置關系兩圓的位置關系設兩圓的連心線長為,則判別圓與圓的位置關系的依據(jù)有以下幾點:(1)當時,圓與圓相離;(2)當時,圓與圓外切;(3)當時,圓與圓相交;(4)當時,圓與圓內(nèi)切;(5)當時,圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大數(shù)據(jù)助力訂單農(nóng)業(yè)精準化供應鏈管理
- 2025至2030迷你酒吧行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 江西省撫州市宜黃縣2024年九上化學期末調(diào)研試題含解析
- 福建省寧德市2025屆九年級化學第一學期期末質(zhì)量檢測試題含解析
- 江蘇省南京市六合區(qū)2025屆數(shù)學八上期末考試試題含解析
- 貴州省從江縣2025屆數(shù)學八年級第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 人才派遣代理招聘服務合同
- 蘇州園林教學設計
- 鄉(xiāng)村衛(wèi)生院網(wǎng)絡信息化建設與升級方案
- 綠色環(huán)保型自修復環(huán)氧樹脂產(chǎn)品的開發(fā)
- 廣州市藝術中學招聘教師考試真題2024
- 工業(yè)自動化設備保修及維修管理措施
- 期末作文預測外研版七年級英語下冊
- 2025-2030中國兒童魚油行業(yè)銷售動態(tài)及競爭策略分析報告
- 統(tǒng)編版五年級升六年級語文暑期銜接《課外閱讀》專項測試卷及答案
- 小小理財家課件
- DB43-T 2622-2023 醫(yī)療導管標識管理規(guī)范
- 譯林版一年級下冊全冊英語知識點梳理
- 案場物業(yè)制度管理制度
- 護理事業(yè)十五五發(fā)展規(guī)劃(2026-2030)
- CJ/T 316-2009城鎮(zhèn)供水服務
評論
0/150
提交評論