數(shù)學(xué)思想與方法 判斷題_第1頁(yè)
數(shù)學(xué)思想與方法 判斷題_第2頁(yè)
數(shù)學(xué)思想與方法 判斷題_第3頁(yè)
數(shù)學(xué)思想與方法 判斷題_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、數(shù)學(xué)思想與方法 判斷題1、計(jì)算機(jī)是數(shù)學(xué)的創(chuàng)造物,又是數(shù)學(xué)的創(chuàng)造者。(是)2、抽象得到的新概念與表達(dá)原來(lái)的對(duì)象的概念之間一定有種屬關(guān)系(否)3、一個(gè)數(shù)學(xué)理論體系內(nèi)的每一個(gè)命題都必須給出證明(否)4、九章算術(shù)不包括代數(shù)、幾何內(nèi)容(否)5、即沒(méi)有脫離數(shù)學(xué)知識(shí)的數(shù)學(xué)思想方法,也沒(méi)有不包括數(shù)學(xué)思想方法的數(shù)學(xué)知識(shí)(是)6、數(shù)學(xué)模型方法在生物學(xué)。經(jīng)濟(jì)學(xué)、軍事學(xué)等領(lǐng)域沒(méi)應(yīng)用(否)7、在解決數(shù)學(xué)解時(shí),往往需要綜合運(yùn)用多種數(shù)學(xué)思想方法才能取得效果(是)8、如果某一類問(wèn)題存在算法,并且構(gòu)造出這個(gè)算法,就一定能求出該解的精確解。(否)9、對(duì)同一數(shù)學(xué)對(duì)象,若選取不同的標(biāo)準(zhǔn),可以得到不同的分類(是)10、數(shù)學(xué)思想方法教學(xué)

2、隸屬于教學(xué)范疇,只要貫徹通常的數(shù)學(xué)教學(xué)原則,就可實(shí)現(xiàn)數(shù)學(xué)思想方法的教學(xué)目標(biāo)(否)11、由類比法推得的結(jié)論必然正確(否)12、有時(shí)特殊情況能與一般情況等價(jià)(否)13、完全歸納法實(shí)質(zhì)上屬于演繹推理的范疇(是)14、古希臘的柏拉圖曾在他的學(xué)校門(mén)口張榜聲明,不懂幾何的人不得入內(nèi),這是因?yàn)樗膶W(xué)校里所學(xué)習(xí)的課程要用到很多幾何知識(shí)(否)15、完全歸納法的一般推理形式是:設(shè)s=A1 A2 An ,由于A1 A2 An 具有性質(zhì)P,因此推斷幾何s中的每一個(gè)對(duì)象都具有性質(zhì)P(否)判斷 (本大題滿分10分。本大題共有5題,請(qǐng)?jiān)诿款}后面的圓括號(hào)內(nèi)填寫(xiě)”是”或·否,答對(duì)得2分,)1,九章算術(shù)不包括代數(shù)、幾何

3、內(nèi)容否2抽象和概括是兩種完全不同的方法 否3沒(méi)有脫離數(shù)學(xué)知識(shí)的數(shù)學(xué)思想方法,也沒(méi)有不包含數(shù)學(xué)思想方法的數(shù)學(xué)知識(shí)是4數(shù)學(xué)模型方法是物理學(xué)、工程學(xué)的專利,在生物學(xué)、經(jīng)濟(jì)學(xué)、軍事學(xué)等領(lǐng)域投有應(yīng)用否5在解決敷學(xué)問(wèn)題時(shí),往往需要綜合運(yùn)用多種數(shù)學(xué)思想方法才能奏效是判斷題(每題2分,共10分。在括號(hào)里填上是或否)1九章算術(shù)不包括代數(shù)、幾何內(nèi)容。(否)2既沒(méi)有脫離數(shù)學(xué)知識(shí)的數(shù)學(xué)思想方法,也沒(méi)有不包括數(shù)學(xué)思想方法的數(shù)學(xué)知識(shí)(是)3對(duì)同一數(shù)學(xué)對(duì)象,若選取不同的標(biāo)準(zhǔn),可以得到不同的分類。(是) 4特殊化是研究共性中的個(gè)性的一種方法。(否) 5數(shù)學(xué)模型方法應(yīng)用面很窄。(否)1提出一個(gè)問(wèn)題的猜想是解決這個(gè)問(wèn)題的終結(jié)。

4、( × )2一個(gè)數(shù)學(xué)理論體系內(nèi)的每一個(gè)命題都必須給出證明。 ( × )3數(shù)學(xué)中的許多問(wèn)題都無(wú)法歸結(jié)為尋找具體算法的問(wèn)題。 ( × )4計(jì)算是隨著計(jì)算機(jī)的發(fā)明而被人們廣泛應(yīng)用的方法。 ( × )5反例在否定一個(gè)命題時(shí)它并不具有特殊的威力。 ( × )6在解決數(shù)學(xué)問(wèn)題時(shí),往往需要綜合運(yùn)用多種數(shù)學(xué)思想方法才能取得效果。 ( )7分類可使知識(shí)條理化、系統(tǒng)化。 ( )8既沒(méi)有脫離數(shù)學(xué)知識(shí)的數(shù)學(xué)思想方法,也沒(méi)有不包括數(shù)學(xué)思想方法的數(shù)學(xué)知識(shí)。 ( )9對(duì)同一數(shù)學(xué)對(duì)象,若選取不同的標(biāo)準(zhǔn),可以得到不同的分類。 ( )10完全歸納法實(shí)質(zhì)上屬于演繹推理的范疇。 (

5、)11數(shù)學(xué)模型方法是近代才產(chǎn)生的。 ( × )12在小學(xué)數(shù)學(xué)教學(xué)中,本教材所涉及到的數(shù)學(xué)思想方法并不多見(jiàn)。 ( × )13所謂特殊化是指在研究問(wèn)題時(shí),從對(duì)象的一個(gè)給定集合出發(fā),進(jìn)而考慮某個(gè)包含于該集合的較小集合的思想。 ( )14既沒(méi)有脫離數(shù)學(xué)知識(shí)的數(shù)學(xué)思想方法,也沒(méi)有不包括數(shù)學(xué)思想方法的數(shù)學(xué)知識(shí)。 ( )15對(duì)同一數(shù)學(xué)對(duì)象,若選取不同的標(biāo)準(zhǔn),可以得到不同的分類。 ( )16數(shù)學(xué)思想方法教學(xué)隸屬數(shù)學(xué)教學(xué)范疇,只要貫徹通常的數(shù)學(xué)教學(xué)原則就可實(shí)現(xiàn)數(shù)學(xué)思想方法教學(xué)目標(biāo)。 ( × )17.數(shù)學(xué)基礎(chǔ)知識(shí)和數(shù)學(xué)思想方法是數(shù)學(xué)教學(xué)的兩條主線。 ( )18.新頒發(fā)的數(shù)學(xué)課程標(biāo)準(zhǔn)中

6、的特點(diǎn)之一“再創(chuàng)造”體現(xiàn)了我國(guó)數(shù)學(xué)課程改革與發(fā)展的新的理念。 ( )19法國(guó)的布爾巴基學(xué)派利用數(shù)學(xué)結(jié)構(gòu)實(shí)現(xiàn)了數(shù)學(xué)的統(tǒng)一。 ( )20由類比法推得的結(jié)論必然正確。 ( × )21計(jì)算機(jī)是數(shù)學(xué)的創(chuàng)造物,又是數(shù)學(xué)的創(chuàng)造者。 ( ) 22抽象得到的新概念與表述原來(lái)的對(duì)象的概念之間一定有種屬關(guān)系。 (× )23一個(gè)數(shù)學(xué)理論體系內(nèi)的每一個(gè)命題都必須給出證明。 ( ×)24貫穿在整個(gè)數(shù)學(xué)發(fā)展歷史過(guò)程中有兩個(gè)思想,一是公理化思想,一是機(jī)械化思想。 ( )25提出一個(gè)問(wèn)題的猜想是解決這個(gè)問(wèn)題的終結(jié)。 (×)26數(shù)學(xué)模型方法在生物學(xué)、經(jīng)濟(jì)學(xué)、軍事學(xué)等領(lǐng)域沒(méi)應(yīng)用。 (

7、5; )27在解決數(shù)學(xué)問(wèn)題時(shí),往往需要綜合運(yùn)用多種數(shù)學(xué)思想方法才能取得效果。 ( )28如果某一類問(wèn)題存在算法,并且構(gòu)造出這個(gè)算法,就一定能求出該問(wèn)題的精確解。(× )29分類可使知識(shí)條理化、系統(tǒng)化。 ( )30在建立數(shù)學(xué)模型的過(guò)程中,不必經(jīng)過(guò)數(shù)學(xué)抽象這一環(huán)節(jié)。 ( × )31九章算術(shù)不包括代數(shù)、幾何內(nèi)容。 ( × )32既沒(méi)有脫離數(shù)學(xué)知識(shí)的數(shù)學(xué)思想方法,也沒(méi)有不包括數(shù)學(xué)思想方法的數(shù)學(xué)知識(shí)。 ( )33對(duì)同一數(shù)學(xué)對(duì)象,若選取不同的標(biāo)準(zhǔn),可以得到不同的分類。 ( )34特殊化是研究共性中的個(gè)性的一種方法。 ( × )35數(shù)學(xué)模型方法應(yīng)用面很窄。 ( 

8、15; )36數(shù)學(xué)思想方法教學(xué)隸屬數(shù)學(xué)教學(xué)范疇,只要貫徹通常的數(shù)學(xué)教學(xué)原則就可實(shí)現(xiàn)數(shù)學(xué)思想方法教學(xué)目標(biāo)。 ( × )37由類比法推得的結(jié)論必然正確。 ( × )38有時(shí)特殊情況能與一般情況等價(jià)。 ( )39演繹的根本特點(diǎn)就是當(dāng)它的前提為真時(shí),結(jié)論必然為真。 ( )40抽象得到的新概念與表述原來(lái)的對(duì)象概念之間不一定有種屬關(guān)系。 ( ×)41完全歸納法實(shí)質(zhì)上屬于演繹推理的范疇。 ( )42古希臘的柏拉圖曾在他的學(xué)校門(mén)口張榜聲明:不懂幾何的人不得入內(nèi)。這是因?yàn)樗膶W(xué)校里所學(xué)習(xí)的課程要用到很多幾何知識(shí)。 (× )43完全歸納法的一般推理形式是:設(shè)S具有性質(zhì)P,因

9、此推斷集合S中的每一個(gè)對(duì)象都具有性質(zhì)P。 ( ×)44九章算術(shù)是世界上最早系統(tǒng)地?cái)⑹龇謹(jǐn)?shù)運(yùn)算的著作,它關(guān)于負(fù)數(shù)的論述也是世界上最早的。 ( )45算術(shù)反映的是物體集合之間的函數(shù)關(guān)系。 ( × )46幾何原本是歐幾里得獨(dú)立創(chuàng)作的。 ( × )47.九章算術(shù)系統(tǒng)地總結(jié)了先秦和東漢初年我國(guó)的數(shù)學(xué)成就。 ( )48.丟番圖在其著作算術(shù)中用了許多符號(hào),它標(biāo)志著文字代數(shù)開(kāi)始向簡(jiǎn)寫(xiě)代數(shù)轉(zhuǎn)變,丟番圖的算術(shù)是數(shù)學(xué)史上的里程碑。 ( )49解析幾何的產(chǎn)生主要?dú)w功于笛卡兒和費(fèi)爾馬。 ( )50英國(guó)的牛頓和德國(guó)的萊布尼茲分別以幾何學(xué)和物理學(xué)為背景用無(wú)窮小量方法建立了微積分。 ( )51隨

10、機(jī)現(xiàn)象就是雜亂無(wú)章的現(xiàn)象,無(wú)論是個(gè)別還是整體,其隨機(jī)現(xiàn)象都沒(méi)有規(guī)律性。 (×) 52數(shù)學(xué)學(xué)科的新發(fā)展分形幾何,其分形的思想就是將某一對(duì)象的細(xì)微部分放大后,其結(jié)構(gòu)與原先的一樣。 ()53我國(guó)中小學(xué)數(shù)學(xué)成績(jī)舉世公認(rèn),“高分必然產(chǎn)生高創(chuàng)造力”,我國(guó)中學(xué)生的科學(xué)測(cè)試成績(jī)名列前茅。 (×)54我國(guó)數(shù)學(xué)課程標(biāo)準(zhǔn)指出,數(shù)學(xué)知識(shí)就是“數(shù)與形以及演繹的知識(shí)”。 ()55在數(shù)學(xué)基礎(chǔ)知識(shí)與數(shù)學(xué)思想方法是數(shù)學(xué)教學(xué)的兩條主線,而且是兩條明線。 (×) 56數(shù)學(xué)抽象擺脫了客觀事物的物質(zhì)性質(zhì),從中抽取其數(shù)與形,因而數(shù)學(xué)抽象具有無(wú)物質(zhì)性。 () 57數(shù)學(xué)公理化方法在其他學(xué)科也能起到作用,所以它是萬(wàn)能的。 (×)58數(shù)學(xué)模型具有預(yù)測(cè)性、準(zhǔn)確性和演繹性,但不包括抽象性。 (×)59猜想具有兩個(gè)顯著的特點(diǎn):一定的科學(xué)性和一定的推測(cè)性。 ()60表層類比和深層類比其涵義是一樣的。 (×)61數(shù)學(xué)史上著名的“哥尼斯堡七橋問(wèn)題”最后由歐拉用一筆畫(huà)方法解決了其無(wú)解。() 62分類方法具有兩要素:母項(xiàng)與子項(xiàng)。 (×)63算法具有無(wú)限性、不確定性與有效性。 (×)64理論方法、實(shí)驗(yàn)方法和計(jì)算方法并列為三種科學(xué)方法。 ()65最早使用數(shù)學(xué)模型方法的當(dāng)數(shù)中國(guó)古

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論