8.2 消元——二元一次方程…1_第1頁
8.2 消元——二元一次方程…1_第2頁
8.2 消元——二元一次方程…1_第3頁
8.2 消元——二元一次方程…1_第4頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、PAGE PAGE 48.2二元一次方程組的解法 加減消元法教學設計安徽省阜陽市潁州區(qū)職教中心 王傳紅教學目標:(一)知識與技能目標:1、學會用加減消元法解二元一次方程組;2、靈活的對方程進行恒等變形使之便于加減消元;3、理解加減消元法的基本思想,體會化未知為已知的化歸思想。(二)過程與方法目標:1、通過經(jīng)歷二元一次方程組解法的探究過程,進一步體會化“未知”為“已知”、化復雜問題為簡單問題的化歸思想方法;2、經(jīng)歷個體思考探究、小組交流、全班交流的合作化學習過程理解根據(jù)加減消元法解二元一次方程組的一般步驟。(三)情感態(tài)度及價值觀:1、培養(yǎng)學生學會自主探索、嘗試、比較,養(yǎng)成與他人合作、交流思維過程

2、的習慣;2、通過交流學習獲取成功體驗,感受加減消元法的應用價值,激發(fā)學生的學習興趣,品嘗成功的喜悅,樹立學習自信心教師備課札記;3、通過知識的學習形成辯證唯物主義觀以解決問題。教學難點:靈活運用加減消元法的技巧,把“二元”轉(zhuǎn)化為“一元”。教學過程:教學環(huán)節(jié)教學過程設計意圖(一)復習舊知問題導入:1、解二元一次方程組的基本思路是什么?基本思路: 消元(二元轉(zhuǎn)化為一元)2、用代入法解方程的步驟是什么?變形:用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù),寫成y=ax+b或x=ay+b代入:把變形后的方程代入到另一個方程中,消去一個元求解:分別求出兩個未知數(shù)的值寫解:寫出方程組的解提出問題,既復習前面所學

3、的內(nèi)容,增加學生的學習興趣,又為接下來的學習做鋪墊。(二)探究新知實踐鞏固:1、用代入法解方程組 2、有否其他解法?我們發(fā)現(xiàn)這個題目的解法有三種:法一:把式轉(zhuǎn)化為 代入消x得y=?再求x,這是我們熟悉的代入消元法;法二:把式轉(zhuǎn)化為2x=3y+17,把2x看成一個整體,直接把代入解關于y的方程,求出y再求x;法三:因為2x=2x,把-消去x,得關于y的方程,求出y,再求x。3、例題講解:加減消元法解: (1) (2)(讓學生思考、分組討論、交流,教師引導并板書解題過程。)4、歸納:加減消元法的概念 從上面兩個方程組的解法可以發(fā)現(xiàn),把兩個二元一次方程的兩邊分別進行相加或者相減,就可以消去一個未知數(shù)

4、,得到一個一元一次方程。 兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程,這種方法叫做加減消元法,簡稱加減法。(口決:同減異加)利用富有挑戰(zhàn)性的問題,激發(fā)學生的好奇心和求知欲,可引發(fā)學生對問題的思考,并促進學生運用已有的知識去發(fā)現(xiàn)和獲取新的知識。讓學生通過探討,逐步發(fā)現(xiàn)可以用加減消元法去解較為復雜的二元一次方程組,也讓他們再次體會了消元化歸的數(shù)學思想,同時也培養(yǎng)了學生分析問題和解決問題的能力。在整個探討的過程中也增強了學生的信心,學生有了發(fā)現(xiàn)的樂趣和成功的喜悅后,會產(chǎn)生一種想表現(xiàn)自己的欲望。(三)設疑拓展秀秀本領:1、(

5、應用)已知方程組較簡便的消元方法是:將兩個方程兩邊_,消去未知數(shù)_。(通過練習鞏固知識。)2、(設疑)已知方程組,用加減法消x的方法是_ _ ;用加減法消y的方法是 。毛鞏固練習,學以致用,增加學生的積極性,給學生提供展現(xiàn)自我才華的機會。設疑激趣,引入新型方程組,探究其解法,層層遞進。(四)拓展應用拓展應用:用加減法解方程組解(1)(2)問題1這兩個方程直接相加減能消去未知數(shù)嗎?為什么? 問題2那么怎樣使方程組中某一未知數(shù)系數(shù)的絕對值相等呢? 分析:這兩個方程中沒有同一個未知數(shù)的系數(shù)相反或相同,直接加減兩個方程不能消元,試一試,能否對方程變形,使得兩個方程中某個未知數(shù)的系數(shù)相反或相同。思考:用

6、加減法消去x應如何解?解得結(jié)果與上面一樣嗎?組織學生觀察、思考、探究、小組合作交流,展示等方式培養(yǎng)了學生綜合能力,活躍了課堂氣氛。巡視幫助學生釋疑解難,讓學生受到重視。同時也培養(yǎng)了學生的合作精神和激發(fā)了學習熱情。(五)總結(jié)提升加減法歸納:如果兩個方程組中有一個未知數(shù)的系數(shù)相等(或者互為相反數(shù)),那么把這兩個方程組相減或者相加;如果兩個方程組中有一個未知數(shù)的系數(shù)成倍數(shù)關系,就把其中一個方程乘以一個適當?shù)臄?shù),使得這個方程組中這個未知數(shù)的系數(shù)相等或者互為相反數(shù),再把這兩個方程組相加或者相減。如果兩個方程沒有一個未知數(shù)的系數(shù)相等、互為相反數(shù)或者成倍數(shù)關系,就把兩個方程分別乘以適當?shù)臄?shù),使得有一個未知數(shù)的系數(shù)相等或者互為相反數(shù),再把兩個方程相加或者相減,這種方法叫做加減消元法。盤點收獲:(1)第一類;(2)第二類。闖關英雄:1、用加減法解下列方程時,你認為先消哪個未知數(shù)較簡單,填寫消元的過程 (1) 消元方法_ 。 (2) 消元方法_ 。2、解方程組加 加深對本節(jié)知識的理解和記憶,培養(yǎng)學生歸納、概括能力。般盤 盤點收獲,總結(jié)提升。觀察、探究、合作交流,展示,獲得成功體驗,樹立自信心,激發(fā)學習興趣。(六)作業(yè)布置課后作業(yè):1、(必做題)解方程組(1) (2) (3) (4)2、(選做題)解方程組(完成作業(yè),鞏固本節(jié)課所學的內(nèi)容)勇攀高峰,獨占鰲頭(思考):1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論