版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1Truncation Errors and the Taylor SeriesChapter 42How does a CPU compute the following functions for a specific x value? cos(x) sin(x) ex log(x) etc.Non-elementary functions such as trigonometric, exponential, and others are expressed in an approximate fashion using Taylor series when their values,
2、derivatives, and integrals are computed.Taylor series provides a means to predict the value of a function at one point in terms of the function value and its derivatives at another point.3Define the step size as h=(xi+1- xi), the series es:Taylor Series (nth order approximation):The Reminder term, R
3、n, accounts for all terms from (n+1) to infinity.nth order approximation:Second order approximation: first order approximationAny smooth function can be approximated as a polynomial.Take x = xi+1 Then f(x) f(xi) zero order approximation Each additional term will contribute some improvement to the ap
4、proximation. Only if an infinite number of terms are added will the series yield an exact result.In most cases, only a few terms will result in an approximation that is close enough to the true value for practical purposes5ExampleApproximate the function f(x) = 1.2 - 0.25x - 0.5x2 - 0.15x3 - 0.1x4 f
5、rom xi = 0 with h = 1 and predict f(x) at xi+1 = 1.6Choose x = xi+1 and xi = 0 Then f(xi+1) = f(x) and (xi+1 xi) = xSince First Derivative of ex is also ex :(2.) (ex )” = ex (3.) (ex)” = ex, (nth.) (ex)(n) = exAs a result we get:Example: computing f(x) = ex using Taylor Series expansionLooks familia
6、r?Maclaurin series for ex 7Choose x=xi+1 and xi=0 Then f(xi+1) = f(x) and (xi+1 xi) = xDerivatives of cos(x): (1.) (cos(x) ) = -sin(x) (2.) (cos(x) )” = -cos(x), (3.) (cos(x) )” = sin(x) (4.) (cos(x) )” = cos(x), As a result we get:Yet another example:computing f(x) = cos(x) using Taylor Series expa
7、nsion8Notes on Taylor expansion:Each additional term will contribute some improvement to the approximation. Only if an infinite number of terms are added will the series yield an exact result.In most cases, only a few terms will result in an approximation that is close enough to the true value for p
8、ractical purposesReminder value R represents the truncation errorThe order of truncation error is hn+1 R=O(hn+1), If R=O(h), halving the step size will halve the error.If R=O(h2), halving the step size will quarter the error.9*here Error PropagationLet xfl refer to the floating point representation of the real number x. Since computer has fixed word length, there is a difference between x and xfl (round-off error) and we would like to estimate the error in the calculation of f(x) :Both x and f(x) are unknown. If xfl is close to x, then we can use first order T
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《輕歌曼舞櫻花謠》說課稿2篇
- 廣告字施工合同2篇
- 學(xué)期教學(xué)工作任務(wù)分解表計(jì)劃
- 電纜借款合同三篇
- 2024年床上用織物制品項(xiàng)目發(fā)展計(jì)劃
- 班級(jí)社會(huì)實(shí)踐活動(dòng)的實(shí)施計(jì)劃
- 手寫門窗合同范本
- 四川省攀枝花市(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)統(tǒng)編版競(jìng)賽題(上學(xué)期)試卷及答案
- 店長(zhǎng)雇傭合同范本
- 拆借合同范本
- ISO 55000-2024 資產(chǎn)管理 術(shù)語(yǔ)、綜述和原則(中文版-雷澤佳翻譯-2024)
- 2024秋二年級(jí)道德與法治上冊(cè) 第10課 我們不亂扔教案 新人教版
- 學(xué)習(xí)違紀(jì)違法案件查處通報(bào)心得體會(huì)3篇
- 監(jiān)理見證取樣工作計(jì)劃
- 天津2024年天津職業(yè)技術(shù)師范大學(xué)附屬高級(jí)技術(shù)學(xué)校招聘筆試歷年典型考題及考點(diǎn)附答案解析
- 大學(xué)生職業(yè)規(guī)劃書奶茶店
- 全冊(cè)教學(xué)設(shè)計(jì)(教學(xué)設(shè)計(jì))-五年級(jí)上冊(cè)勞動(dòng)蘇教版
- 2024-2029年中國(guó)綿綿冰機(jī)行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告
- 奧鵬-中國(guó)醫(yī)科大學(xué)2024年7月《新藥研討與開發(fā)(本科)》(答案)作業(yè)考核試題
- 《中藥種植技術(shù)》課件-第八章 藥用植物病蟲害及其防治
- 行政職業(yè)能力測(cè)試-數(shù)量關(guān)系真題帶答案
評(píng)論
0/150
提交評(píng)論