2021-2022學年湖南省邵陽市私立新潮學校高三數(shù)學文模擬試題含解析_第1頁
2021-2022學年湖南省邵陽市私立新潮學校高三數(shù)學文模擬試題含解析_第2頁
2021-2022學年湖南省邵陽市私立新潮學校高三數(shù)學文模擬試題含解析_第3頁
2021-2022學年湖南省邵陽市私立新潮學校高三數(shù)學文模擬試題含解析_第4頁
2021-2022學年湖南省邵陽市私立新潮學校高三數(shù)學文模擬試題含解析_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022學年湖南省邵陽市私立新潮學校高三數(shù)學文模擬試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 在一個不透明的袋子里,有三個大小相等小球(兩黃一紅),現(xiàn)在分別由3個同學無放回地抽取,如果已知第一名同學沒有抽到紅球,那么最后一名同學抽到紅球的概率為()ABCD無法確定參考答案:C【考點】古典概型及其概率計算公式【分析】本題是一個計算概率的問題,由題意知已經(jīng)知道,由于第一名同學沒有抽到紅球,問題轉(zhuǎn)化為研究兩個人抽取紅球的情況,根據(jù)無放回抽取的概率意義,可得到最后一名同學抽到紅球的概率【解答】解:由題意,由于第一名同

2、學沒有抽到紅球,問題轉(zhuǎn)化為研究兩個人抽取紅球的情況,由于無放回的抽樣是一個等可能抽樣,故此兩個同學抽到紅球的概率是一樣的都是故選:C2. 如圖,從氣球上測得正前方的河流的兩岸,的俯角分別為,此時氣球的高是,則河流的寬度等于( )A B C D參考答案:C3. 在球內(nèi)有相距的兩個平行截面,截面面積分別是和,球心不在截面之間,則球面的面積是(A) (B) (C) (D)參考答案:A如圖,圓O是球的大圓,A1B1、A2B2分別是兩條平行于截面圓的直徑,過O作OC1A1B1于C1,交A2B2于C2.由于A1B1A2B2,所以O(shè)C2A2B2.由圓的性質(zhì)可得,C1和C2分別是A1B1和A2B2的中點.設(shè)兩

3、平行平面的半徑分別為r1和r2,且r1r2,依題意r12=5,r22=8,r12=5,r22=8.OA1和OA2都是球的半徑R,OC1=,OC2=,-=1.解這個方程得R2=9,S球=4R2=36(cm2).球的表面積是36 cm2.4. 在中,若,則A是銳角三角形 B是直角三角形 C是鈍角三角形 D的形狀不能確定參考答案:B5. 直線與曲線相切于點,則的值為( )ABC D參考答案:C6. 已知且的值( )A一定小于0 B等于0 C一定大于0 D無法確定參考答案:A7. 已知函數(shù)的部分圖像如圖所示,其中為圖像上兩點,將函數(shù)f(x)圖像的橫坐標縮短到原來的,再向右平移個單位長度后得到函數(shù)g(x

4、)的圖像,則函數(shù)g(x)的單調(diào)遞增區(qū)間為( )A. B. C. D. 參考答案:C【分析】根據(jù)圖像得到,在于圖像的平移得到,將帶入正弦函數(shù)的遞減區(qū)間,即可得答案.【詳解】由圖像得,圖像過點,即,解得:,函數(shù)的單調(diào)遞增區(qū)間為.故選:C.【點睛】本題考查三角函數(shù)的圖像和性質(zhì)、平移變換、單調(diào)區(qū)間、誘導公式等知識的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.8. 如圖所示是一個幾何體的三視圖,若該幾何體的體積為,則主視圖中三角形的高x的值為 ( )A. B. C. 1D. 參考答案:C略9. 設(shè)全集為,集合,則( ) 參考答案:C,所以10. 如圖,將平面直角坐標系的格點

5、(橫、縱坐標均為整數(shù)的點)按如下規(guī)則表上數(shù)字標簽:原點處標0點(1,0)處標1,點(1,1)處標2,點 (0,1)處標3,點(1,1)處標4,點(1,0)點標5,點(1,1)處標6,點(0,1)處標7,以此類推,則標簽20172的格點的坐標為( )A(1009,1008) B(1008,1007) C(2017,2016) D(2016,2015) 參考答案:A由題意得 ,選A.二、 填空題:本大題共7小題,每小題4分,共28分11. 已知P是橢圓上不同于左頂點A、右頂點B的任意一點,記直線PA,PB的斜率分別為的值為 ;參考答案:略12. 觀察以下等式:參考答案:13. 等差數(shù)列中,公差,則

6、_.參考答案:14. 已知函數(shù),給出下列結(jié)論:函數(shù)的值域為; 函數(shù)在0,1上是增函數(shù);對任意,方程在0,1內(nèi)恒有解;若存在使得,則實數(shù)的取值范圍是.其中正確命題是 (填上你認為正確的所有命題的序號)參考答案:(1)(2)(4)15. 如圖所示,一個幾何體的正視圖和側(cè)視圖都是邊長為2的正方形,俯視圖是一個直徑為2的圓,則這個幾何體的全面積為_.參考答案:由三視圖知該幾何體的直觀圖是底面半徑為1,高為2的圓柱,所以其全面積是16. 已知實數(shù)x、y滿足,則目標函數(shù)的最大值為_.參考答案:5試題分析:可行域為一個三角形ABC及其內(nèi)部,其中,直線過點C時取最大值1.考點:線性規(guī)劃【易錯點睛】線性規(guī)劃的實

7、質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大或最小值會在可行域的端點或邊界上取得.17. (幾何證明選講選做題)如圖,是O上的四個點,過點B的切線與的延長線交于點E.若,則 參考答案:三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. (本小題滿分14分)已知為實數(shù),對于實數(shù)和,定義運算“”:,設(shè)若在上為增函數(shù),求實數(shù)的取值范圍;若方程有三個不同的解,記此三個解的積為,求的取值范圍參考答案:19. 如圖,正方形ABC

8、D中,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點F,連接CF并延長交AB于點E()求證:AE=EB;()若EF?FC=,求正方形ABCD的面積參考答案:【考點】相似三角形的性質(zhì);直角三角形的射影定理【專題】證明題;選作題;轉(zhuǎn)化思想;綜合法;推理和證明【分析】()推導出EA為圓D的切線,且EB是圓O的切線,由此利用切割線定理能證明AE=EB()設(shè)正方形的邊長為a,連結(jié)BF,由射影定理能求出正方形ABCD的面積【解答】證明:()以D為圓心、DA為半徑的圓弧與以BC為直徑半圓交于點F,且四邊形ABCD為正方形,EA為圓D的切線,且EB是圓O的切線,由切割線定理得EA2=EF?EC,故A

9、E=EB()設(shè)正方形的邊長為a,連結(jié)BF,BC為圓O的直徑,BFEC,在RtBCE中,由射影定理得EF?FC=BF2=,BF=,解得a=2,正方形ABCD的面積為4【點評】本題考查兩線段相等的證明,考查正方形面積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng)20. 下面四個圖案,都是由小正三角形構(gòu)成,設(shè)第n個圖形中所有小正三角形邊上黑點的總數(shù)為. 圖1 圖2 圖3 圖4(1)求出,;(2)找出與的關(guān)系,并求出的表達式;(3)求證:().參考答案:(1)12,27,48,75. (2), (3)利用“放縮法”。略21. 設(shè)函數(shù)f(x)=ax,e為自然對數(shù)的底數(shù)()若函數(shù)f(x)的圖象

10、在點 (e2,f(e2)處的切線方程為 3x+4ye2=0,求實數(shù)a,b的值;()當b=1時,若存在 x1,x2e,e2,使 f(x1)f(x2)+a成立,求實數(shù)a的最小值參考答案:【考點】導數(shù)在最大值、最小值問題中的應(yīng)用【分析】(I)a(x0,且x1),由題意可得f(e2)=a=,f(e2)=,聯(lián)立解得即可(II)當b=1時,f(x)=,f(x)=,由xe,e2,可得由f(x)+a=+,可得f(x)+amax=,xe,e2存在 x1,x2e,e2,使 f(x1)f(x2)+a成立?xe,e2,f(x)minf(x)max+a=,對a分類討論解出即可【解答】解:(I)a(x0,且x1),函數(shù)f

11、(x)的圖象在點 (e2,f(e2)處的切線方程為 3x+4ye2=0,f(e2)=a=,f(e2)=,聯(lián)立解得a=b=1(II)當b=1時,f(x)=,f(x)=,xe,e2,lnx1,2,f(x)+a=+,f(x)+amax=,xe,e2存在 x1,x2e,e2,使 f(x1)f(x2)+a成立?xe,e2,f(x)minf(x)max+a=,當a時,f(x)0,f(x)在xe,e2上為減函數(shù),則f(x)min=,解得a當a時,由f(x)=a在e,e2上的值域為(i)當a0即a0時,f(x)0在xe,e2上恒成立,因此f(x)在xe,e2上為增函數(shù),f(x)min=f(e)=,不合題意,舍去(ii)當a0時,即時,由f(x)的單調(diào)性和值域可知:存在唯一x0(e,e2),使得f(x0)=0,且滿足當xe,x0),f(x)0,f(x)為減函數(shù);當x時,f(x)0,f(x)為增函數(shù)f(x)min=f(x0)=ax0,x0(e,e2)a,與矛盾(或構(gòu)造函數(shù)即可)綜上可得:a的最小值為22. (本題滿分13分)如圖,四棱錐PABCD中,PA底面ABCD,ACAD底面ABCD為梯形,ABDC,ABBC,PAABBC=3,點E在棱PB上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論