


版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.方程x(x-2)+x-2=0的兩個根為()A., B.,C., D.,2.若x是2的相反數(shù),|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或43.下列各式計算正確的是()A.a(chǎn)+3a=3a2 B.(–a2)3=–a6 C.a(chǎn)3·a4=a7 D.(a+b)2=a2–2ab+b24.若一個凸多邊形的內(nèi)角和為720°,則這個多邊形的邊數(shù)為A.4 B.5 C.6 D.75.如圖,四邊形ABCD內(nèi)接于⊙O,點I是△ABC的內(nèi)心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數(shù)為()A.56° B.62° C.68° D.78°6.若分式有意義,則a的取值范圍是()A.a(chǎn)≠1 B.a(chǎn)≠0 C.a(chǎn)≠1且a≠0 D.一切實數(shù)7.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m8.如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點B的坐標(biāo)是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點B的對應(yīng)點B2的坐標(biāo)是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)9.不等式組中兩個不等式的解集,在數(shù)軸上表示正確的是A. B.C. D.10.在下列四個標(biāo)志中,既是中心對稱又是軸對稱圖形的是()A. B. C. D.11.下列二次根式中,是最簡二次根式的是()A. B. C. D.12.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當(dāng)扇形AOB的半徑為2時,陰影部分的面積為__________.14.當(dāng)x=_____時,分式值為零.15.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點,連接EF,點P是EF上的任意一點,連接PA,PB,則PA+PB的最小值為__.16.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結(jié)EF.(1)線段BE與AF的位置關(guān)系是,=.(2)如圖2,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).17.如圖,O是坐標(biāo)原點,菱形OABC的頂點A的坐標(biāo)為(﹣3,4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過頂點B,則k的值為_____.18.將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知拋物線y=a(x-1)2+3(a≠0)與y軸交于點A(0,2),頂點為B,且對稱軸l1與x軸交于點M(1)求a的值,并寫出點B的坐標(biāo);(2)將此拋物線向右平移所得新的拋物線與原拋物線交于點C,且新拋物線的對稱軸l2與x軸交于點N,過點C做DE∥x軸,分別交l1、l2于點D、E,若四邊形MDEN是正方形,求平移后拋物線的解析式.20.(6分)某市政府大力支持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量Y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+1.設(shè)李明每月獲得利潤為W(元),當(dāng)銷售單價定為多少元時,每月獲得利潤最大?根據(jù)物價部門規(guī)定,這種護眼臺燈不得高于32元,如果李明想要每月獲得的利潤2000元,那么銷售單價應(yīng)定為多少元?21.(6分)均衡化驗收以來,樂陵每個學(xué)校都高樓林立,校園環(huán)境美如畫,軟件、硬件等設(shè)施齊全,小明想要測量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走6米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°,已如A點離地面的高度AB=4米,∠BCA=30°,且B、C、D三點在同一直線上.(1)求樹DE的高度;(2)求食堂MN的高度.22.(8分)在平面直角坐標(biāo)系中,關(guān)于的一次函數(shù)的圖象經(jīng)過點,且平行于直線.(1)求該一次函數(shù)表達式;(2)若點Q(x,y)是該一次函數(shù)圖象上的點,且點Q在直線的下方,求x的取值范圍.23.(8分)一道選擇題有四個選項.(1)若正確答案是,從中任意選出一項,求選中的恰好是正確答案的概率;(2)若正確答案是,從中任意選擇兩項,求選中的恰好是正確答案的概率.24.(10分)某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價和零售價如表所示:品名獼猴桃芒果批發(fā)價元千克2040零售價元千克2650他購進的獼猴桃和芒果各多少千克?如果獼猴桃和芒果全部賣完,他能賺多少錢?25.(10分)已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當(dāng)點P運動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.26.(12分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設(shè)此交點與點C的距離為d,直接寫出d的取值范圍.27.(12分)如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=8(1)求一次函數(shù)的解析式;(2)求ΔAOB的面積。
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)因式分解法,可得答案.【詳解】解:因式分解,得(x-2)(x+1)=0,
于是,得x-2=0或x+1=0,
解得x1=-1,x2=2,
故選:C.【點睛】本題考查了解一元二次方程,熟練掌握因式分解法是解題關(guān)鍵.2、D【解析】
直接利用相反數(shù)以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數(shù),|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數(shù)的混合運算,正確得出x,y的值是解題關(guān)鍵.3、C【解析】
根據(jù)合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式逐項計算即可.【詳解】A.a+3a=4a,故不正確;B.(–a2)3=(-a)6,故不正確;C.a3·a4=a7,故正確;D.(a+b)2=a2+2ab+b2,故不正確;故選C.【點睛】本題考查了合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式,熟練掌握各知識點是解答本題的關(guān)鍵.4、C【解析】
設(shè)這個多邊形的邊數(shù)為n,根據(jù)多邊形的內(nèi)角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設(shè)這個多邊形的邊數(shù)為n,由多邊形的內(nèi)角和是720°,根據(jù)多邊形的內(nèi)角和定理得(n-2)180°=720°.解得n=6.故選C.【點睛】本題主要考查多邊形的內(nèi)角和定理,熟練掌握多邊形的內(nèi)角和定理是解答本題的關(guān)鍵.5、C【解析】分析:由點I是△ABC的內(nèi)心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內(nèi)接四邊形的外角等于內(nèi)對角可得答案.詳解:∵點I是△ABC的內(nèi)心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內(nèi)接于⊙O,∴∠CDE=∠B=68°,故選C.點睛:本題主要考查三角形的內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是掌握三角形的內(nèi)心的性質(zhì)及圓內(nèi)接四邊形的性質(zhì).6、A【解析】分析:根據(jù)分母不為零,可得答案詳解:由題意,得,解得故選A.點睛:本題考查了分式有意義的條件,利用分母不為零得出不等式是解題關(guān)鍵.7、D【解析】
解:設(shè)小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.8、D【解析】
首先利用平移的性質(zhì)得到△A1B1C1中點B的對應(yīng)點B1坐標(biāo),進而利用關(guān)于x軸對稱點的性質(zhì)得到△A2B2C2中B2的坐標(biāo),即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應(yīng)點B1坐標(biāo)為(-1,2),則與△A1B1C1關(guān)于于x軸對稱的△A2B2C2中B2的坐標(biāo)為(-1,-2),故選D.【點睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.9、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數(shù)軸上表示為:,故選B.10、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】解:A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、既不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.11、B【解析】
根據(jù)最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式判斷即可.【詳解】A、=4,不符合題意;B、是最簡二次根式,符合題意;C、=,不符合題意;D、=,不符合題意;故選B.【點睛】本題考查最簡二次根式的定義.最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式.12、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B二、填空題:(本大題共6個小題,每小題4分,共24分.)13、π﹣1【解析】
根據(jù)勾股定理可求OC的長,根據(jù)題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.【點睛】本題考查正方形的性質(zhì)和扇形面積的計算,解題關(guān)鍵是得到扇形半徑的長度.14、﹣1.【解析】試題解析:分式的值為0,則:解得:故答案為15、2【解析】
將PA+PB轉(zhuǎn)化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點,四邊形ABCD是等腰梯形,B點關(guān)于EF的對稱點C點,AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉(zhuǎn)化PA+PC的值,從而找出其最小值求解.16、(1)互相垂直;;(2)結(jié)論仍然成立,證明見解析;(3)135°.【解析】
(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長,進而得出答案;
(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;
(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關(guān)系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2,
∵點E,F(xiàn)分別是線段BC,AC的中點,
∴=;(2))如圖2,∵點E,F(xiàn)分別是線段BC,AC的中點,
∴EC=BC,F(xiàn)C=AC,
∴,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴,
∴∠1=∠2,
延長BE交AC于點O,交AF于點M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.17、﹣1【解析】
根據(jù)點C的坐標(biāo)以及菱形的性質(zhì)求出點B的坐標(biāo),然后利用待定系數(shù)法求出k的值即可.【詳解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,則點B的橫坐標(biāo)為﹣3﹣5=﹣8,故B的坐標(biāo)為:(﹣8,4),將點B的坐標(biāo)代入y=得,4=,解得:k=﹣1.故答案為:﹣1.18、40°【解析】
直接利用三角形內(nèi)角和定理得出∠6+∠7的度數(shù),進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案為40°.【點睛】主要考查了三角形內(nèi)角和定理,正確應(yīng)用三角形內(nèi)角和定理是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)a=-1,B坐標(biāo)為(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】
(1)利用待定系數(shù)法即可解決問題;(2)如圖,設(shè)拋物線向右平移后的解析式為y=-(x-m)2+3,再用m表示點C的坐標(biāo),需分兩種情況討論,用待定系數(shù)法即可解決問題.【詳解】(1)把點A(0,2)代入拋物線的解析式可得,2=a+3,∴a=-1,∴拋物線的解析式為y=-(x-1)2+3,頂點為(1,3)(2)如圖,設(shè)拋物線向右平移后的解析式為y=-(x-m)2+3,由解得x=∴點C的橫坐標(biāo)為∵MN=m-1,四邊形MDEN是正方形,∴C(,m-1)把C點代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)∴平移后的解析式為y=-(x-3)2+3,當(dāng)點C在x軸的下方時,C(,1-m)把C點代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)∴平移后的解析式為y=-(x-7)2+3綜上:平移后的解析式為y=-(x-3)2+3,或y=-(x-7)2+3.【點睛】此題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是熟知正方形的性質(zhì)與函數(shù)結(jié)合進行求解.20、(1)35元;(2)30元.【解析】
(1)由題意得,每月銷售量與銷售單價之間的關(guān)系可近似看作一次函數(shù),利潤=(定價-進價)×銷售量,從而列出關(guān)系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,從而求出銷售單價.【詳解】解:(1)由題意,得:W=(x-20)×y=(x-20)(-10x+1)=-10x2+700x-10000=-10(x-35)2+2250當(dāng)x=35時,W取得最大值,最大值為2250,答:當(dāng)銷售單價定為35元時,每月可獲得最大利潤為2250元;(2)由題意,得:,解得:,,銷售單價不得高于32元,銷售單價應(yīng)定為30元.答:李明想要每月獲得2000元的利潤,銷售單價應(yīng)定為30元.【點睛】本題考查二次函數(shù)的性質(zhì)及其應(yīng)用,還考查拋物線的基本性質(zhì),另外將實際問題轉(zhuǎn)化為求函數(shù)最值問題,從而來解決實際問題.21、(1)12米;(2)(2+8)米【解析】
(1)設(shè)DE=x,先證明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根據(jù)EF=8求出x的值得到答案;(2)延長NM交DB延長線于點P,先分別求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.【詳解】(1)如圖,設(shè)DE=x,∵AB=DF=4,∠ACB=30°,∴AC=8,∵∠ECD=60°,∴△ACE是直角三角形,∵AF∥BD,∴∠CAF=30°,∴∠CAE=60°,∠AEC=30°,∴AE=16,∴Rt△AEF中,EF=8,即x﹣4=8,解得x=12,∴樹DE的高度為12米;(2)延長NM交DB延長線于點P,則AM=BP=6,由(1)知CD=CE=×AC=4,BC=4,∴PD=BP+BC+CD=6+4+4=6+8,∵∠NDP=45°,且∠NPD=90°,∴NP=PD=6+8,∴NM=NP﹣MP=6+8﹣4=2+8,∴食堂MN的高度為(2+8)米.【點睛】此題是解直角三角形的實際應(yīng)用,考查直角三角形的性質(zhì),30°角所對的直角邊等于斜邊的一半,銳角三角函數(shù),將已知的線段及角放在相應(yīng)的直角三角形中利用三角函數(shù)解題,由此做相應(yīng)的輔助線是解題的關(guān)鍵.22、(1);(2).【解析】
(1)由題意可設(shè)該一次函數(shù)的解析式為:,將點M(4,7)代入所設(shè)解析式求出b的值即可得到一次函數(shù)的解析式;(2)根據(jù)直線上的點Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結(jié)果.【詳解】解:(1)∵一次函數(shù)平行于直線,∴可設(shè)該一次函數(shù)的解析式為:,∵直線過點M(4,7),∴8+b=7,解得b=-1,∴一次函數(shù)的解析式為:y=2x-1;(2)∵點Q(x,y)是該一次函數(shù)圖象上的點,∴y=2x-1,又∵點Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【點睛】本題考查了待定系數(shù)法求一次函數(shù)的解析式以及一次函數(shù)與不等式的關(guān)系,屬于??碱}型,熟練掌握待定系數(shù)法與一次函數(shù)與不等式的關(guān)系是解題的關(guān)鍵.23、(1);(2)【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出選中的恰好是正確答案A,B的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)選中的恰好是正確答案A的概率為;
(2)畫樹狀圖:
共有12種等可能的結(jié)果數(shù),其中選中的恰好是正確答案A,B的結(jié)果數(shù)為2,
所以選中的恰好是正確答案A,B的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.24、(1)購進獼猴桃20千克,購進芒果30千克;(2)能賺420元錢.【解析】
設(shè)購進獼猴桃x千克,購進芒果y千克,由總價單價數(shù)量結(jié)合老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;根據(jù)利潤銷售收入成本,即可求出結(jié)論.【詳解】設(shè)購進獼猴桃x千克,購進芒果y千克,根據(jù)題意得:,解得:.答:購進獼猴桃20千克,購進芒果30千克.元.答:如果獼猴桃和芒果全部賣完,他能賺420元錢.【點睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是:找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;根據(jù)數(shù)量關(guān)系,列式計算.25、(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時,△PAB的面積有最大值;(3)點P(4,6).【解析】
(1)利用待定系數(shù)法進行求解即可得;(2)作PM⊥OB與點M,交AB于點N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45°,結(jié)合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點E與點A重合,求出y=6時x的值即可得出答案.【詳解】(1)∵拋物線過點B(6,0)、C(﹣2,0),∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),將點A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點P作PM⊥OB與點M,交AB于點N,作AG⊥PM于點G,設(shè)直線AB解析式為y=kx+b,將點A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當(dāng)t=3時,△PAB的面積有最大值;(3)△PDE為等腰直角三角形,
則PE=PD,
點P(m,-m2+2m+6),
函數(shù)的對稱軸為:x=2,則點E的橫坐標(biāo)為:4-m,
則PE=|2m-4|,
即-m2+2m+6+m-6=|2m-4|,
解得:m=4或-2或5+或5-(舍去-2和5+)
故點P的坐標(biāo)為:(4,6)或(5-,3-5).【點睛】本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.26、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】
(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年美容師客戶滿意度調(diào)查問卷題及答案
- 湖北省十堰市教學(xué)合作體2024-2025學(xué)年高二下學(xué)期3月月考地理試題(原卷版)
- 營養(yǎng)不足與成犬的健康問題試題及答案
- 2025工廠車間安全培訓(xùn)考試試題【基礎(chǔ)題】
- 2024-2025新職工入場安全培訓(xùn)考試試題a4版打印
- 2024-2025新員工入職安全培訓(xùn)考試試題全套
- 2024-2025工廠安全培訓(xùn)考試試題及答案參考
- 2025年廠級安全培訓(xùn)考試試題及答案b卷
- 2025年新入員工安全培訓(xùn)考試試題及答案4A
- 2025年企業(yè)安全培訓(xùn)考試試題附參考答案AB卷
- 2024年企業(yè)招聘考試-農(nóng)科院招聘筆試歷年真題薈萃含答案
- 【工商管理專業(yè)畢業(yè)綜合訓(xùn)練報告2600字(論文)】
- 2022湖南省郴州市中考物理真題試卷和答案
- 《固體礦產(chǎn)勘查鉆孔質(zhì)量要求》(報批稿)
- 八音的分類教學(xué)課件
- 挖掘機的基礎(chǔ)知識-挖掘機的結(jié)構(gòu)及特點
- 長江防汛抗旱方案
- 茶葉加工工理論試卷及答案
- 電力行業(yè)從業(yè)人員技能等級認證考評員理論知識考試題(附答案)
- 《幼兒園健康》課件精1
- 國企統(tǒng)戰(zhàn)工作調(diào)研報告
評論
0/150
提交評論