版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤2.把二次函數(shù)y=2x2的圖象向右平移3個單位,再向上平移2個單位后的函數(shù)關(guān)系式是()A. B.C. D.3.如圖,AB是⊙O的直徑,BC與⊙O相切于點B,AC交⊙O于點D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°4.如圖,的頂點均在上,若,則的度數(shù)為()A. B. C. D.5.若銳角α滿足cosα<且tanα<,則α的范圍是()A.30°<α<45° B.45°<α<60°C.60°<α<90° D.30°<α<60°6.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:67.某班學(xué)生做“用頻率估計概率”的實驗時,給出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實驗可能是()A.拋一枚硬幣,出現(xiàn)正面朝上B.從標有1,2,3,4,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)C.從一個裝有6個紅球和3個黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃8.4月24日是中國航天日,1970年的這一天,我國自行設(shè)計、制造的第一顆人造地球衛(wèi)星“東方紅一號”成功發(fā)射,標志著中國從此進入了太空時代,它的運行軌道,距地球最近點439000米.將439000用科學(xué)記數(shù)法表示應(yīng)為()A.0.439×106 B.4.39×106 C.4.39×105 D.139×1039.下列汽車標志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.10.如圖,在平行四邊形ABCD中,E為CD上一點,連接AE,BD,且AE,BD交于點F,::25,則DE:=()A.2:5 B.3:2 C.2:3 D.5:3二、填空題(每小題3分,共24分)11.只請寫出一個開口向下,并且與軸有一個公共點的拋物線的解析式__________.12.半徑為5的圓內(nèi)接正六邊形的邊心距為__________.13.若關(guān)于x的方程x2+2x﹣m=0(m是常數(shù))有兩個相等的實數(shù)根,則反比例函數(shù)y=經(jīng)過第_____象限.14.如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點E是AB邊上一動點,過點E作DE⊥AB交AC邊于點D,將∠A沿直線DE翻折,點A落在線段AB上的F處,連接FC,當△BCF為等腰三角形時,AE的長為_____.15.如圖,三個頂點的坐標分別為,以原點O為位似中心,把這個三角形縮小為原來的,可以得到,已知點的坐標是,則點的坐標是______.16.如圖,在⊙O中,弦AB=8cm,OC⊥AB,垂足為C,OC=3cm,則⊙O的半徑為______cm.17.如圖,一下水管橫截面為圓形,直徑為,下雨前水面寬為,一場大雨過后,水面上升了,則水面寬為__________.18.計算:=_____.三、解答題(共66分)19.(10分)某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:(1)求出y與x之間的函數(shù)關(guān)系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤,那么每件商品的銷售價應(yīng)定為多少元?(3)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?20.(6分)如圖,圓的內(nèi)接五邊形ABCDE中,AD和BE交于點N,AB和EC的延長線交于點M,CD∥BE,BC∥AD,BM=BC=1,點D是的中點.(1)求證:BC=DE;(2)求證:AE是圓的直徑;(3)求圓的面積.21.(6分)有三張正面分別標有數(shù)字:-1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機抽出一張記下數(shù)字,放回洗勻后再從中隨機抽出一張記下數(shù)字.(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;(2)將第一次抽出的數(shù)字作為點的橫坐標x,第二次抽出的數(shù)字作為點的縱坐標y,求點(x,y)落在雙曲線上的概率.22.(8分)在一個不透明的袋子中裝有3個乒乓球,分別標有數(shù)字1,2,3,這些乒乓球除所標數(shù)字不同外其余均相同.先從袋子中隨機摸出1個乒乓球,記下標號后放回,再從袋子中隨機摸出1個乒乓球記下標號,用畫樹狀圖(或列表)的方法,求兩次摸出的乒乓球標號之和是偶數(shù)的概率.23.(8分)某小區(qū)的居民籌集資金1600元,計劃在一塊上、下底分別為10m、20m的梯形空地上種花(如圖所示).(1)他們在△AMD和△BMC地帶上種植太陽花,單價為8元/m2.當△AMD地帶種滿花后(圖中陰影部分)花了160元,請計算種滿△BMC地帶所需的費用;(2)若△AMB和△DMC地帶要種的有玫瑰花和茉莉花可供選擇,單價分別為12元/m2和10元/m2,應(yīng)選擇哪一種花,剛好用完所籌集的資金?24.(8分)有三張卡片(形狀、大小、質(zhì)地都相同),正面分別寫上整式.將這三張卡片背面向上洗勻,從中隨機抽取一張卡片,再從剩下的卡片中隨機抽取另一張.第一次抽取的卡片正面的整式作為分子,第二次抽取的卡片正面的整式作為分母.(1)請寫出抽取兩張卡片的所有等可能結(jié)果(用樹狀圖或列表法求解);(2)試求抽取的兩張卡片結(jié)果能組成分式的概率.25.(10分)綜合與探究:如圖,已知拋物線與x軸相交于A、B兩點,與y軸交于點C,連接BC,點P為線段BC上一動點,過點P作BC的垂線交拋物線于點Q,請解答下列問題:(1)求拋物線與x軸的交點A和B的坐標及頂點坐標(2)求線段PQ長度的最大值,并直接寫出及此時點P的坐標.26.(10分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立?說明理由.(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=12,AD=BD=10.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當以D為圓心,以DC為半徑的圓與AB相切,求t的值.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】由拋物線的開口方向判斷a與2的關(guān)系,由拋物線與y軸的交點判斷c與2的關(guān)系,然后根據(jù)對稱軸判定b與2的關(guān)系以及2a+b=2;當x=﹣1時,y=a﹣b+c;然后由圖象確定當x取何值時,y>2.【詳解】①∵對稱軸在y軸右側(cè),∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據(jù)圖示知,當m=1時,有最大值;當m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數(shù)).故正確.⑤如圖,當﹣1<x<3時,y不只是大于2.故錯誤.故選A.【點睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是熟練掌握①二次項系數(shù)a決定拋物線的開口方向,當a>2時,拋物線向上開口;當a<2時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>2),對稱軸在y軸左;當a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).2、A【解析】將二次函數(shù)的圖象向右平移3個單位,再向上平移2個單位后的函數(shù)關(guān)系式為:.故選A.3、D【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.4、D【分析】根據(jù)同弧所對圓心角等于圓周角的兩倍,可得到∠BOC=2∠BAC,再結(jié)合已知即可得到此題的答案.【詳解】∵∠BAC和∠BOC分別是所對的圓周角和圓心角,∴∠BOC=2∠BAC.∵∠BAC=35°,∴∠BOC=70°.故選D.【點睛】本題考查了圓周角定理,熟練掌握定理是解題的關(guān)鍵.5、B【詳解】∵α是銳角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是銳角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故選B.【點睛】本題主要考查了余弦函數(shù)、正切函數(shù)的增減性與特殊角的余弦函數(shù)、正切函數(shù)值,熟記特殊角的三角函數(shù)值和了解銳角三角函數(shù)的增減性是解題的關(guān)鍵6、C【解析】根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關(guān)系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設(shè)△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),解題關(guān)鍵是通過線段的比得到三角形面積的關(guān)系.7、C【分析】根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的頻率,約為0.33者即為正確答案.【詳解】解:A、拋一枚硬幣,出現(xiàn)正面朝上的頻率是=0.5,故本選項錯誤;B、從標有1,2,3,4,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)頻率約為:==0.5,故本選項錯誤;C、從一個裝有6個紅球和3個黑球的袋子中任取一球,取到的是黑球概率是=≈0.33,故本選項正確;D、一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃的概率是=0.25,故本選項錯誤;故選:C.【點睛】本題考查了利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.同時此題在解答中要用到概率公式.8、C【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將439000用科學(xué)記數(shù)法表示為4.39×1.
故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、D【解析】根據(jù)題意直接利用軸對稱圖形和中心對稱圖形的概念求解即可.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;B、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;C、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、既是中心對稱圖形也是軸對稱圖形,故此選項正確;故選:D.【點睛】本題主要考查中心對稱與軸對稱的概念即有軸對稱的關(guān)鍵是尋找對稱軸,兩邊圖象折疊后可重合,中心對稱是要尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.10、B【分析】根據(jù)平行四邊形的性質(zhì)得到DC//AB,DC=AB,得到△DFE∽△BFA,根據(jù)相似三角形的性質(zhì)計算即可.【詳解】四邊形ABCD是平行四邊形,
,,
∽,
:,
,
::2,
故選B.【點睛】本題考查的是相似三角形的性質(zhì)、平行四邊形的性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】要根據(jù)開口向下且與x軸有惟一的公共點,寫出一個拋物線解析式即可.【詳解】解:∵與x軸只有一個公共點,并且開口方向向下,
∴a<0,△=0,即b2-4ac=0,滿足這些特點即可.如.
故答案為:(答案不唯一).【點睛】此題主要考查了二次函數(shù)的性質(zhì),要了解性質(zhì)與函數(shù)中a,b,c的關(guān)系.12、【分析】連接OA、OB,作OH⊥AB,根據(jù)圓內(nèi)接正六邊形的性質(zhì)得到△ABO是等邊三角形,利用垂徑定理及勾股定理即可求出邊心距OH.【詳解】如圖,連接OA、OB,作OH⊥AB,∵六邊形ABCDEF是圓內(nèi)接正六邊形,∴∠FAB=∠ABC=180-,∴∠OAB=∠OBA=60,∴△ABO是等邊三角形,∴AB=OA=5,∵OH⊥AB,∴AH=2.5,∴OH=,故答案為:.【點睛】此題考查圓內(nèi)接正六邊形的性質(zhì),垂徑定理,勾股定理.解題中熟記正六邊形的性質(zhì)得到∠FAB=∠ABC=120是解題的關(guān)鍵,由此即可證得△ABO是等邊三角形,利用勾股定理解決問題.13、二,四【分析】關(guān)于x的方程有唯一的一個實數(shù)根,則△=0可求出m的值,根據(jù)m的符號即可判斷反比例函數(shù)y=經(jīng)過的象限.【詳解】解:∵方程x2+2x﹣m=0(m是常數(shù))有兩個相等的實數(shù)根,∴△=22﹣4×1×(﹣m)=4+4m=0,∴m=﹣1;∴反比例函數(shù)y=經(jīng)過第二,四象限,故答案為:二,四.【點睛】本題考查的知識點是一元二次方程根與系數(shù)的關(guān)系以及反比例函數(shù)的圖象,利用根的判別式求出m的值是解此題的關(guān)鍵14、2或或.【分析】由勾股定理求出AB,設(shè)AE=x,則EF=x,BF=1﹣2x;分三種情況討論:①當BF=BC時,列出方程,解方程即可;②當BF=CF時,F(xiàn)在BC的垂直平分線上,得出AF=BF,列出方程,解方程即可;③當CF=BC時,作CG⊥AB于G,則BG=FGBF,由射影定理求出BG,再解方程即可.【詳解】由翻折變換的性質(zhì)得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB1.設(shè)AE=x,則EF=x,BF=1﹣2x.分三種情況討論:①當BF=BC時,1﹣2x=6,解得:x=2,∴AE=2;②當BF=CF時.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF=FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x,∴AE;③當CF=BC時,作CG⊥AB于G,如圖所示:則BG=FGBF.根據(jù)射影定理得:BC2=BG?AB,∴BG,即(1﹣2x),解得:x,∴AE;綜上所述:當△BCF為等腰三角形時,AE的長為:2或或.故答案為:2或或.【點睛】本題考查了翻折變換的性質(zhì)、勾股定理、射影定理、等腰三角形的性質(zhì);本題有一定難度,需要進行分類討論.15、(1,2)【解析】解:∵點A的坐標為(2,4),以原點O為位似中心,把這個三角形縮小為原來的,∴點A′的坐標是(2×,4×),即(1,2).故答案為(1,2).16、5【分析】先根據(jù)垂徑定理得出AC的長,再由勾股定理即可得出結(jié)論.【詳解】連接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA=故答案為:5.【點睛】此題考查勾股定理、垂徑定理及其推論,解題關(guān)鍵在于連接OA作為輔助線.17、1【分析】先根據(jù)勾股定理求出OE的長,再根據(jù)垂徑定理求出CF的長,即可得出結(jié)論.【詳解】解:如圖:作OE⊥AB于E,交CD于F,連接OA,OC∵AB=60cm,OE⊥AB,且直徑為100cm,∴OA=50cm,AE=∴OE=,∵水管水面上升了10cm,∴OF=40-10=030cm,∴CF=,∴CD=2CF=1cm.故答案為:1.【點睛】本題考查的是垂徑定理的應(yīng)用,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.18、3【解析】原式利用平方根的定義化簡即可得到結(jié)果.【詳解】=3,故答案為3【點睛】本題考查了二次根式的平方,熟練掌握平方根的定義是解本題的關(guān)鍵.三、解答題(共66分)19、(1);(2)每件商品的銷售價應(yīng)定為元或元;(3)售價定為元/件時,每天最大利潤元.【分析】(1)待定系數(shù)法求解可得;
(2)根據(jù)“每件利潤×銷售量=總利潤”列出一元二次方程,解之可得;
(3)根據(jù)以上相等關(guān)系列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)性質(zhì)求解可得.【詳解】(1)設(shè)與之間的函數(shù)關(guān)系式為,
由所給函數(shù)圖象可知:
,
解得:.
故與的函數(shù)關(guān)系式為;(2)根據(jù)題意,得:,
整理,得:,
解得:或,
答:每件商品的銷售價應(yīng)定為元或元;(3)∵,
∴
,
∴當時,,
∴售價定為元/件時,每天最大利潤元.【點睛】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式,理解題意確定相等關(guān)系,并據(jù)此列出函數(shù)解析式.20、(1)證明見解析;(2)證明見解析;(3).【分析】(1)根據(jù)平行線得出∠DCE=∠CEB,求出即可;(2)求出AB=BC=BM,得出△ACB和△BCM是等腰三角形,求出∠ACE=90°即可;(3)根據(jù)求出∠BEA=∠DAE=22.5°,∠BAN=45°,求出BN=1,,根據(jù)勾股定理求出AE2的值,即可求出答案.【詳解】(1)證明:∵CD∥BE,∴∠DCE=∠CEB,∴,∴DE=BC;(2)證明:連接AC,∵BC∥AD,∴∠CAD=∠BCA,∴,∴AB=DC,∵點D是的中點,∴,∴CD=DE,∴AB=BC.又∵BM=BC,∴AB=BC=BM,即△ACB和△BCM是等腰三角形,在△ACM中,,∴∠ACE=90°,∴AE是圓的直徑;(3)解:由(1)(2)得:,又∵AE是圓的直徑,∴∠BEA=∠DAE=22.5°,∠BAN=45°,∴NA=NE,∴∠BNA=∠BAN=45°,∠ABN=90°,∴AB=BN,∵AB=BM=1,∴BN=1,∴.由勾股定理得:AE2=AB2+BE2=,∴圓的面積.【點睛】本題主要考察正多邊形與圓、勾股定理、平行線的性質(zhì),解題關(guān)鍵是根據(jù)勾股定理求出AE2的值.21、(1)所有結(jié)果:(-1,-1),(-1,1),(-1,2),(1,-1)(1,1),(1,2),(2,-1),(2,1),(2,2);(2).【分析】(1)畫出樹狀圖即可得解;(2)根據(jù)反比例函數(shù)圖象上點的坐標特征判斷出在雙曲線上y=上的情況數(shù),然后根據(jù)概率公式列式計算即可得解.【詳解】(1)根據(jù)題意畫出樹狀圖如下:結(jié)果為:(-1,-1),(-1,1),(-1,2),(1,-1)(1,1),(1,2),(2,-1),(2,1),(2,2);(2)當x=-1時,y==-2,當x=1時,y==2,當x=2時,y==1,一共有9種等可能的情況,點(x,y)落在雙曲線上y=上的有2種情況,所以,P=.考點:1.列表法與樹狀圖法;2.反比例函數(shù)圖象上點的坐標特征.22、圖形見解析,概率為【分析】根據(jù)題意列出樹形圖,再利用概率公式計算即可.【詳解】根據(jù)題意,列表如下:共有9種結(jié)果,并且它們出現(xiàn)的可能性相等,符合題意的結(jié)果有5種,.【點睛】本題考查概率的計算,關(guān)鍵在于熟悉樹形圖和概率公式.23、(1)640元;(1)茉莉花.【分析】(1)由梯形的性質(zhì)得到AD平行BC從而得到△AMD和△CMB相似,通過相似的性質(zhì)即可得到△BMC的面積,即可算出所需費用;(1)通過三角形等高時,得到面積比等于底的比,即可通過△AMD得到△AMB的面積,同理得到△DMC的面積,再分別算出種植兩種花時所需的費用,比較大小即可求出結(jié)果.【詳解】解:(1)∵四邊形ABCD是梯形,∴AD∥BC,∴△AMD∽△CMB,∴.∵種滿△AMD地帶花費160元,∴S△AMD==10(m1),∴S△CMB=4S△AMD=80(m1),∴種滿△BMC地帶所需的費用為80×8=640(元).(1)∵△AMD∽△CMB,∴===.∵△AMD與△AMB等高,∴,∴S△AMB=1S△AMD=40(m1).同理可求S△DMC=40m1.當△AMB和△DMC地帶種植玫瑰花時,所需總費用為160+640+80×11=1760(元),當△AMB和△DMC地帶種植茉莉花時,所需總費用為160+640+80×10=1600(元),∴種植茉莉花剛好用完所籌資金.【點睛】本題考查相似三角形的性質(zhì)、梯形的幾何特征,熟知三角形的性質(zhì)是解題的關(guān)鍵.24、(1)見解析;(2)【分析】(1)用樹狀圖或列表法把所有的情況表示出來即可;(2)根據(jù)樹狀圖找到所有的情況數(shù)以及能組成分式的情況數(shù),利用能組成分式的情況數(shù)與總數(shù)之比求概率即可.【詳解】(1)樹狀圖如下:(2)總共有6種情況,其中能組成分式的有4種,所以(組成分式)【點睛】本題主要考查用樹狀圖或列表法求隨機事件的概率,掌握樹狀圖或列表法和概率公式是解題的關(guān)鍵.25、(1)點A的坐標為(-2,0),點B的坐標為(1,0),頂點坐標為(1,).(2)PQ的最大值=,此時,點P的坐標為(1,3)【分析】(1)令y=0可求得x的值,可知點A、點B的坐標,運用配方法可求拋物線的頂點坐標;(2)先求出直線BC的表達式,再設(shè)點Q的坐標為(m,)則點E的坐標為(m,-m+1),得QE=-(-m+1)=,求出QE的最大值即可解決問題.【詳解】(1)把y=0代入中得:解得:x1=-2,x2=1∴點A的坐標為(-2,0),點B的坐標為(1,0).∵∴拋物線W的頂點坐標為(1,).(2)過點Q作QF⊥x軸,垂足為F,交線段BC于點E.當x=0時,代入得:y=1,∴點C的坐標為(0,1),∵點B的坐標為(1,0).∴OC=OB=1,∴∠OBC=15°.設(shè)QC的表達式為y=kx+b,把C(0,1),B(1,0)代入解析式得,,解得,,∴直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024二手房屋買賣合同書,二手房買賣合同范本
- 2024校園零散維修年度服務(wù)合同
- 2024解除勞動合同的勞動爭議仲裁申請期限如何起算問題批復(fù)
- 2024上海市勞動合同常用條款解讀
- 完整美縫施工合同書范文三篇
- 2024裝飾外包合同范本常用版本
- 《召公諫歷王彌謗》課件
- 建筑裝飾建筑工程分包商管理案例考核試卷
- 腎部疾病的診斷與治療
- 化學(xué)礦物的利用與市場發(fā)展前景的研究考核試卷
- 草原改良協(xié)議書
- 初中數(shù)學(xué)-5.4平行線的性質(zhì)定理和判定定理教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 流浪人你若到斯巴
- 部編版四上《中國古代神話》整本書導(dǎo)讀課教學(xué)設(shè)計
- 弗蘭克-赫茲實驗
- 九年級語文試卷講評課
- 園藝與健康知到章節(jié)答案智慧樹2023年金陵科技學(xué)院
- 知識點解析《方向向量與直線的參數(shù)方程》
- 重度子癇前期、胎盤早剝急救演練
- 老年社區(qū)獲得性肺炎的幾個熱點問題專家講座
- 建筑消防工程施工操作規(guī)程
評論
0/150
提交評論