版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的系數(shù)為()A. B. C. D.2.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.3.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.50504.甲、乙兩名學(xué)生的六次數(shù)學(xué)測驗成績(百分制)的莖葉圖如圖所示.①甲同學(xué)成績的中位數(shù)大于乙同學(xué)成績的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績的方差小于乙同學(xué)成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④5.已知點(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b6.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或77.歷史上有不少數(shù)學(xué)家都對圓周率作過研究,第一個用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分?jǐn)?shù)、無窮級數(shù)等各種值的表達式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.8.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”9.已知集合,若,則實數(shù)的取值范圍為()A. B. C. D.10.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.11.如圖,網(wǎng)格紙是由邊長為1的小正方形構(gòu)成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.12.設(shè)函數(shù),若函數(shù)有三個零點,則()A.12 B.11 C.6 D.3二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊分別為,,,若,且,則面積的最大值為________.14.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.15.設(shè)為互不相等的正實數(shù),隨機變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)16.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)若曲線在點處的切線也與曲線相切,求實數(shù)的值;(2)試討論函數(shù)零點的個數(shù).18.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點的切線方程;(2)討論函數(shù)的單調(diào)性.19.(12分)某早餐店對一款新口味的酸奶進行了一段時間試銷,定價為元/瓶.酸奶在試銷售期間足量供應(yīng),每天的銷售數(shù)據(jù)按照,,,分組,得到如下頻率分布直方圖,以不同銷量的頻率估計概率.從試銷售期間任選三天,求其中至少有一天的酸奶銷量大于瓶的概率;試銷結(jié)束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱瓶,批發(fā)成本元;小箱每箱瓶,批發(fā)成本元.由于酸奶保質(zhì)期短,當(dāng)天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計算時每個分組取中間值作為代表,比如銷量為時看作銷量為瓶).①設(shè)早餐店批發(fā)一大箱時,當(dāng)天這款酸奶的利潤為隨機變量,批發(fā)一小箱時,當(dāng)天這款酸奶的利潤為隨機變量,求和的分布列和數(shù)學(xué)期望;②以利潤作為決策依據(jù),該早餐店應(yīng)每天批發(fā)一大箱還是一小箱?注:銷售額=銷量×定價;利潤=銷售額-批發(fā)成本.20.(12分)已知兩數(shù).(1)當(dāng)時,求函數(shù)的極值點;(2)當(dāng)時,若恒成立,求的最大值.21.(12分)已知函數(shù)(,為自然對數(shù)的底數(shù)),.(1)若有兩個零點,求實數(shù)的取值范圍;(2)當(dāng)時,對任意的恒成立,求實數(shù)的取值范圍.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點的極坐標(biāo)為,求點到線段中點的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運算等有關(guān)方面的知識與技能,屬于中低檔題,也是??贾R點.在二項式定理的應(yīng)用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進行計算,從而問題可得解.2.D【解析】
根據(jù)線面垂直的性質(zhì),可知;結(jié)合即可證明,進而求得.由線段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質(zhì)應(yīng)用,平面向量數(shù)量積的運算,屬于基礎(chǔ)題.3.C【解析】
因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運算的能力,屬于中檔題.4.A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績的中位數(shù)為,乙同學(xué)成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學(xué)的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).5.B【解析】
先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.6.C【解析】
根據(jù)平面向量數(shù)量積的坐標(biāo)運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標(biāo)運算,屬于基礎(chǔ)題.7.B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.8.B【解析】
解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關(guān)系可判斷C、D選項的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關(guān)系,考查推理能力,屬于基礎(chǔ)題.9.A【解析】
解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運算能力.10.A【解析】
先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進行求解即可.【詳解】當(dāng)時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.11.C【解析】
根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運算的核心素養(yǎng).12.B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點個數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個或三個(時有三個,時有兩個),所以關(guān)于的方程只能有一個根(若有兩個根,則關(guān)于的方程有四個或五個根),由,可得的值分別為,則故選B.【點睛】本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時等號成立,∴,∴面積的最大值為.故答案為:【點睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.14.【解析】
根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標(biāo)為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關(guān)鍵是能夠利用圓的性質(zhì)和對數(shù)運算法則構(gòu)造出滿足的方程,由此得到結(jié)果.15.>【解析】
根據(jù)方差計算公式,計算出的表達式,由此利用差比較法,比較出兩者的大小關(guān)系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡得①,由于為互不相等的正實數(shù),故,也即,也即.故答案為:【點睛】本小題主要考查隨機變量期望和方差的計算,考查差比較法比較大小,考查運算求解能力,屬于難題.16.【解析】
①根據(jù)向量數(shù)量積的坐標(biāo)表示結(jié)合兩角差的正弦公式的逆用即可得解;②結(jié)合①求出,根據(jù)面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點睛】此題考查平面向量與三角函數(shù)解三角形綜合應(yīng)用,涉及平面向量數(shù)量積的坐標(biāo)表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)答案不唯一具體見解析【解析】
(1)利用導(dǎo)數(shù)的幾何意義,設(shè)切點的坐標(biāo),用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構(gòu)造函數(shù)研究其最大值,進而求得;(2)對函數(shù)進行求導(dǎo)后得,對分三種情況進行一級討論,即,,,結(jié)合函數(shù)圖象的單調(diào)性及零點存在定理,可得函數(shù)零點情況.【詳解】解:(1)曲線在點處的切線方程為,即.令切線與曲線相切于點,則切線方程為,∴,∴,令,則,記,于是,在上單調(diào)遞增,在上單調(diào)遞減,∴,于是,.(2),①當(dāng)時,恒成立,在上單調(diào)遞增,且,∴函數(shù)在上有且僅有一個零點;②當(dāng)時,在R上沒有零點;③當(dāng)時,令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.?。┤簦瑒t,在上沒有零點;ⅱ)若,則有且僅有一個零點;ⅲ)若,則.,令,則,∴當(dāng)時,單調(diào)遞增,.∴又∵,∴在R上恰有兩個零點,綜上所述,當(dāng)時,函數(shù)沒有零點;當(dāng)或時,函數(shù)恰有一個零點;當(dāng)時,恰有兩個零點.【點睛】本題考查導(dǎo)數(shù)的幾何意義、切線方程、零點等知識,求解切線有關(guān)問題時,一定要明確切點坐標(biāo).以導(dǎo)數(shù)為工具,研究函數(shù)的圖象特征及性質(zhì),從而得到函數(shù)的零點個數(shù),此時如果用到零點存在定理,必需說明在區(qū)間內(nèi)單調(diào)且找到兩個端點值的函數(shù)值相乘小于0,才算完整的解法.18.(1);(2)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減.【解析】
(1)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點的關(guān)系進而求得原函數(shù)的單調(diào)性即可.【詳解】(1)當(dāng)時,,則切線的斜率為.又,則曲線在點的切線方程是,即.(2)的定義域是..①當(dāng)時,,所以當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減;②當(dāng)時,,所以當(dāng)和時,;當(dāng)時,,所以在和上單調(diào)遞增,在上單調(diào)遞減;③當(dāng)時,,所以在上恒成立.所以在上單調(diào)遞增;④當(dāng)時,,所以和時,;時,.所以在和上單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減.【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及含參數(shù)的函數(shù)單調(diào)性討論,需要根據(jù)題意求函數(shù)的極值點,再根據(jù)極值點的大小關(guān)系分類討論即可.屬于??碱}.19.;①詳見解析;②應(yīng)該批發(fā)一大箱.【解析】
酸奶每天銷量大于瓶的概率為,不大于瓶的概率為,設(shè)“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.利用對立事件概率公式求解即可.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況,分別求出相應(yīng)概率,列出分布列,求出的數(shù)學(xué)期望,若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況,分別求出相應(yīng)概率,由此求出的分布列和數(shù)學(xué)期望;②根據(jù)①中的計算結(jié)果,,從而早餐應(yīng)該批發(fā)一大箱.【詳解】解:根據(jù)圖中數(shù)據(jù),酸奶每天銷量大于瓶的概率為,不大于瓶的概率為.設(shè)“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.所以.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況.當(dāng)銷量為瓶時,利潤為元;當(dāng)銷量為瓶時,利潤為元;當(dāng)銷量為瓶時,利潤為元;當(dāng)銷量為瓶時,利潤為元.隨機變量的分布列為所以(元)若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況.當(dāng)銷量為瓶時,利潤為元;當(dāng)銷量為瓶時,利潤為元.隨機變量的分布列為所以(元).②根據(jù)①中的計算結(jié)果,,所以早餐店應(yīng)該批發(fā)一大箱.【點睛】本題考查概率,離散型隨機變量的分布列、數(shù)學(xué)期望的求法,考查古典概型、對立事件概率計算公式等基礎(chǔ)知識,屬于中檔題.20.(1)唯一的極大值點1,無極小值點.(2)1【解析】
(1)求出導(dǎo)函數(shù),求得的解,確定此解兩側(cè)導(dǎo)數(shù)值的正負(fù),確定極值點;(2)問題可變形為恒成立,由導(dǎo)數(shù)求出函數(shù)的最小值,時,無最小值,因此只有,從而得出的不等關(guān)系,得出所求最大值.【詳解】解:(1)定義域為,當(dāng)時,,令得,當(dāng)所以在上單調(diào)遞增,在上單調(diào)遞減,所以有唯一的極大值點,無極小值點.(2)當(dāng)時,.若恒成立,則恒成立,所以恒成立,令,則,由題意,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以所以,所以,故的最大值為1.【點睛】本題考查用導(dǎo)數(shù)求函數(shù)極值,研究不等式恒成立問題.在求極值時,由確定的不一定是極值點,還需滿足在兩側(cè)的符號相反.不等式恒成立深深轉(zhuǎn)化為求函數(shù)的最值,這里分離
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年大二學(xué)年總結(jié)自我鑒定5篇
- 【模塊二名篇名句默寫】【高分攻略】高考語文一輪復(fù)習(xí)學(xué)案
- 石河子大學(xué)《數(shù)字信號處理》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《口腔解剖生理學(xué)二》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《工程項目管理》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《波斯文學(xué)史》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《數(shù)學(xué)物理方法》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《英國文學(xué)史》2022-2023學(xué)年第一學(xué)期期末試卷
- 《論語》導(dǎo)讀(2021下)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 沈陽理工大學(xué)《電子技術(shù)基礎(chǔ)》2021-2022學(xué)年期末試卷
- 《分散系》說課課件
- 小升初數(shù)學(xué)蘇州外國語學(xué)校數(shù)學(xué)模擬試卷答案版蘇教版精
- 抗痙攣體位專題知識講座
- 19規(guī)則值班水手英語聽力與會話
- 廣東省3證書高職高考語文試卷和答案
- 茶多酚性質(zhì)功效及應(yīng)用
- 安全文明作業(yè)方案及措施
- 平行四邊形的面積學(xué)習(xí)單
- 境外項目緊急撤離方案
- 愛普化工新材料建設(shè)項目環(huán)境影響報告書
- 函數(shù)的零點與方程的解(說課稿)
評論
0/150
提交評論