甘肅省白銀市第九中學2022年數學高三第一學期期末經典試題含解析_第1頁
甘肅省白銀市第九中學2022年數學高三第一學期期末經典試題含解析_第2頁
甘肅省白銀市第九中學2022年數學高三第一學期期末經典試題含解析_第3頁
甘肅省白銀市第九中學2022年數學高三第一學期期末經典試題含解析_第4頁
甘肅省白銀市第九中學2022年數學高三第一學期期末經典試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古代中的“禮、樂、射、御、書、數”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數”,指數學.某校國學社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種2.設是虛數單位,復數()A. B. C. D.3.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.4.已知為坐標原點,角的終邊經過點且,則()A. B. C. D.5.若的內角滿足,則的值為()A. B. C. D.6.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立7.設全集,集合,則=()A. B. C. D.8.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.9.在平面直角坐標系中,若不等式組所表示的平面區(qū)域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.10.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人11.數學中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結論的序號是()A.①② B.①③ C.①③④ D.①②④12.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.函數在區(qū)間(-∞,1)上遞增,則實數a的取值范圍是____14.公比為正數的等比數列的前項和為,若,,則的值為__________.15.已知,則__________.16.點到直線的距離為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎者擲各面標有點數的正方體骰子次,若擲得點數大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數學期望不超過元,求的最小值.18.(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.19.(12分)已知都是大于零的實數.(1)證明;(2)若,證明.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.21.(12分)已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.(1)求橢圓C的方程;(2)設點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.22.(10分)在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.已知等差數列的公差為,等差數列的公差為.設分別是數列的前項和,且,,(1)求數列的通項公式;(2)設,求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據“數”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數”排在第三節(jié),則“射”和“御”兩門課程相鄰時,可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點睛】本題主要考查了排列、組合的應用,其中解答中認真審題,根據題設條件,先排列有限制條件的元素是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.2、D【解析】

利用復數的除法運算,化簡復數,即可求解,得到答案.【詳解】由題意,復數,故選D.【點睛】本題主要考查了復數的除法運算,其中解答中熟記復數的除法運算法則是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.3、D【解析】

先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.4、C【解析】

根據三角函數的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結果.【詳解】根據題意,,解得,所以,所以,所以.故選:C.【點睛】本題考查三角函數定義的應用和二倍角的正弦公式,考查計算能力.5、A【解析】

由,得到,得出,再結合三角函數的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數的性質,以及三角函數的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.6、D【解析】

取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.7、A【解析】

先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.8、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.9、B【解析】

依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區(qū)域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.【點睛】本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題10、D【解析】

根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.11、C【解析】

①利用之間的代換判斷出對稱軸的條數;②利用基本不等式求解出到原點的距離最大值;③將面積轉化為的關系式,然后根據基本不等式求解出最大值;④根據滿足的不等式判斷出四葉草與對應圓的關系,從而判斷出面積是否小于.【詳解】①:當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.12、D【解析】

根據面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據復合函數單調性同增異減,結合二次函數的性質、對數型函數的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數的性質和復合函數的單調性可得解得.故答案為:【點睛】本小題主要考查根據對數型復合函數的單調性求參數的取值范圍,屬于基礎題.14、56【解析】

根據已知條件求等比數列的首項和公比,再代入等比數列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數列的通項公式和前項和公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.15、【解析】

首先利用,將其兩邊同時平方,利用同角三角函數關系式以及倍角公式得到,從而求得,利用誘導公式求得,得到結果.【詳解】因為,所以,即,所以,故答案是.【點睛】該題考查的是有關三角函數化簡求值問題,涉及到的知識點有同角三角函數關系式,倍角公式,誘導公式,屬于簡單題目.16、2【解析】

直接根據點到直線的距離公式即可求出。【詳解】依據點到直線的距離公式,點到直線的距離為?!军c睛】本題主要考查點到直線的距離公式的應用。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、;.【解析】

設顧客獲得三等獎為事件,因為顧客擲得點數大于的概率為,顧客擲得點數小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設顧客獲得三等獎為事件,因為顧客擲得點數大于的概率為,顧客擲得點數小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數學期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于??碱}.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用勾股定理結合條件求得和,利用橢圓的定義求得的值,進而可得出,則橢圓的標準方程可求;(Ⅱ)設點、,將直線的方程與橢圓的方程聯立,利用韋達定理與弦長公式求出,利用幾何法求得直線截圓所得弦長,可得出關于的函數表達式,利用不等式的性質可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標準方程為;(Ⅱ)設點、,聯立消去,得,,則,,設圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中弦長之積的取值范圍的求解,涉及韋達定理與弦長公式的應用,考查計算能力,屬于中等題.19、(1)答案見解析.(2)答案見解析【解析】

(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點睛】本題考查了基本不等式的應用,屬于基礎題.20、(1)(2)(3)直線平面,證明見解析【解析】

取中點,連接,則,再由已知證明平面,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,求出平面的一個法向量.(1)求出的坐標,由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標,由,結合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點,連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設平面的一個法向量為.由,取,得.(1)證明:設直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設平面的一個法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論