




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
12.4
二項(xiàng)分布與正態(tài)分布12.4二項(xiàng)分布與正態(tài)分布-2-知識(shí)梳理雙基自測(cè)23141.條件概率及其性質(zhì)
P(B|A)+P(C|A)-2-知識(shí)梳理雙基自測(cè)23141.條件概率及其性質(zhì)P(B|-3-知識(shí)梳理雙基自測(cè)23142.事件的相互獨(dú)立性(1)定義:設(shè)A,B為兩個(gè)事件,若P(AB)=
,則稱事件A與事件B相互獨(dú)立.
(2)性質(zhì):①若事件A與B相互獨(dú)立,則P(B|A)=
,P(A|B)=P(A),P(AB)=
.
③如果A1,A2,…,An相互獨(dú)立,那么P(A1A2…An)=
.
P(A)P(B)P(B)P(A)P(B)P(A1)P(A2)…P(An)-3-知識(shí)梳理雙基自測(cè)23142.事件的相互獨(dú)立性P(A)P-4-知識(shí)梳理雙基自測(cè)23143.獨(dú)立重復(fù)試驗(yàn)與二項(xiàng)分布(1)獨(dú)立重復(fù)試驗(yàn)是指在相同條件下可重復(fù)進(jìn)行的,各次試驗(yàn)之間相互獨(dú)立的一種試驗(yàn).在這種試驗(yàn)中,每一次試驗(yàn)只有兩種結(jié)果,即要么發(fā)生,要么不發(fā)生,且任何一次試驗(yàn)中各事件發(fā)生的概率都是一樣的.(2)在n次獨(dú)立重復(fù)試驗(yàn)中,用X表示事件A發(fā)生的次數(shù),設(shè)每次試驗(yàn)中事件A發(fā)生的概率為p,則P(X=k)=
,此時(shí)稱隨機(jī)變量X服從
,記作
,并稱p為成功概率.
二項(xiàng)分布
X~B(n,p)-4-知識(shí)梳理雙基自測(cè)23143.獨(dú)立重復(fù)試驗(yàn)與二項(xiàng)分布二項(xiàng)-5-知識(shí)梳理雙基自測(cè)23144.正態(tài)分布(1)正態(tài)曲線:函數(shù)
其中實(shí)數(shù)μ和σ(σ>0)為參數(shù).我們稱函數(shù)φμ,σ(x)的圖象為正態(tài)分布密度曲線,簡(jiǎn)稱正態(tài)曲線.(2)正態(tài)曲線的特點(diǎn)①曲線在x軸的上方,與x軸不相交;②曲線是單峰的,它關(guān)于直線x=μ對(duì)稱;④曲線與x軸之間的面積為1;⑤當(dāng)σ一定時(shí),曲線隨著μ的變化而沿x軸平移;⑥當(dāng)μ一定時(shí),曲線的形狀由σ確定.σ越大,曲線越“矮胖”,總體分布越分散;σ越小,曲線越“瘦高”,總體分布越集中.-5-知識(shí)梳理雙基自測(cè)23144.正態(tài)分布-6-知識(shí)梳理雙基自測(cè)2314(3)正態(tài)分布的定義及表示:若對(duì)于任何實(shí)數(shù)a,b(a<b),隨機(jī)變量X滿足,則稱隨機(jī)變量X服從正態(tài)分布,記作
.
正態(tài)總體在三個(gè)特殊區(qū)間內(nèi)取值的概率值①P(μ-σ<X≤μ+σ)=
;
②P(μ-2σ<X≤μ+2σ)=
;
③P(μ-3σ<X≤μ+3σ)=
.
X~N(μ,σ2)0.68270.95450.9973-6-知識(shí)梳理雙基自測(cè)2314(3)正態(tài)分布的定義及表示:若2-7-知識(shí)梳理雙基自測(cè)3415答案答案關(guān)閉(1)×
(2)×
(3)×
(4)√
(5)√1.下列結(jié)論正確的打“√”,錯(cuò)誤的打“×”.(1)條件概率一定不等于它的非條件概率.(
)(2)對(duì)于任意兩個(gè)事件,公式P(AB)=P(A)P(B)都成立.(
)(3)二項(xiàng)分布是一個(gè)概率分布,其公式相當(dāng)于(a+b)n二項(xiàng)展開式的通項(xiàng)公式,其中的a=p,b=1-p.(
)(4)若事件A,B相互獨(dú)立,則P(B|A)=P(B).(
)(5)X服從正態(tài)分布,通常用X~N(μ,σ2)表示,其中參數(shù)μ和σ2分別表示正態(tài)分布的均值和方差.(
)2-7-知識(shí)梳理雙基自測(cè)3415答案答案關(guān)閉(1)×-8-知識(shí)梳理雙基自測(cè)23415答案解析解析關(guān)閉答案解析關(guān)閉2.袋中有3紅5黑共8個(gè)大小形狀相同的小球,不放回地依次從中摸出兩個(gè)小球,則在第一次摸得紅球的條件下,第二次仍是紅球的概率為(
)-8-知識(shí)梳理雙基自測(cè)23415答案解析解析關(guān)閉答案-9-知識(shí)梳理雙基自測(cè)234153.(2016河南焦作二模)某射擊手射擊一次命中的概率是0.7,連續(xù)兩次均射中的概率是0.4,已知某次射中,則隨后一次射中的概率是(
)答案解析解析關(guān)閉答案解析關(guān)閉-9-知識(shí)梳理雙基自測(cè)234153.(2016河南焦作二模)-10-知識(shí)梳理雙基自測(cè)23415答案解析解析關(guān)閉答案解析關(guān)閉-10-知識(shí)梳理雙基自測(cè)23415答案解析解析關(guān)閉答-11-知識(shí)梳理雙基自測(cè)234155.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為
.
(附:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.3%,P(μ-2σ<ξ<μ+2σ)=95.4%.)答案解析解析關(guān)閉答案解析關(guān)閉-11-知識(shí)梳理雙基自測(cè)234155.已知某批零件的長(zhǎng)度誤差-12-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例1(1)把一枚硬幣連續(xù)拋兩次,記“第一次出現(xiàn)正面”為事件A,“第二次出現(xiàn)反面”為事件B,則P(B|A)等于(
)(2)(2016河南平頂山高三期末)從1,2,3,4,5中任取2個(gè)不同的數(shù),事件A為“取到的2個(gè)數(shù)之和為偶數(shù)”,事件B為“取到的2個(gè)數(shù)均為偶數(shù)”,則P(B|A)等于(
)思考求條件概率有哪些基本的方法?答案解析解析關(guān)閉答案解析關(guān)閉-12-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例1(1)把一枚硬幣連續(xù)拋兩-13-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-13-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-14-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練1(1)(2016湖南永州三模)袋中有大小完全相同的2個(gè)紅球和3個(gè)黑球,不放回地摸出2個(gè)球,設(shè)“第一次摸出紅球”為事件A,“摸得的2個(gè)球同色”為事件B,則概率P(B|A)為(
)(2)盒中有紅球5個(gè),藍(lán)球11個(gè),其中紅球中有2個(gè)玻璃球,3個(gè)木質(zhì)球;藍(lán)球中有4個(gè)玻璃球,7個(gè)木質(zhì)球.現(xiàn)從中任取一球,假設(shè)每個(gè)球被取到的可能性相同.若取到的球是玻璃球,則它是藍(lán)球的概率為
.
答案解析解析關(guān)閉答案解析關(guān)閉-14-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練1(1)(2016湖-15-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例2(2016北京,理16)A,B,C三個(gè)班共有100名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過(guò)分層抽樣獲得了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)):(1)試估計(jì)C班的學(xué)生人數(shù);(2)從A班和C班抽出的學(xué)生中,各隨機(jī)選取一人,A班選出的人記為甲,C班選出的人記為乙.假設(shè)所有學(xué)生的鍛煉時(shí)間相互獨(dú)立,求該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)的概率;-15-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例2(2016北京,理16)-16-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4(3)再?gòu)腁,B,C三個(gè)班中各隨機(jī)抽取一名學(xué)生,他們?cè)撝艿腻憻挄r(shí)間分別是7,9,8.25(單位:小時(shí)),這3個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為μ1,表格中數(shù)據(jù)的平均數(shù)記為μ0,試判斷μ0和μ1的大小.(結(jié)論不要求證明)思考如何求復(fù)雜事件的概率?求相互獨(dú)立事件同時(shí)發(fā)生的概率有哪些常用的方法?-16-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4(3)再?gòu)腁,B,C三個(gè)班中-17-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-17-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-18-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-18-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-19-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得1.求復(fù)雜事件的概率,要正確分析復(fù)雜事件的構(gòu)成,將復(fù)雜事件轉(zhuǎn)化為幾個(gè)彼此互斥的事件的和事件或轉(zhuǎn)化為幾個(gè)相互獨(dú)立事件同時(shí)發(fā)生的積事件,然后求概率.2.求相互獨(dú)立事件同時(shí)發(fā)生的概率的方法(1)利用相互獨(dú)立事件的概率乘法公式直接求解.(2)直接計(jì)算較煩瑣或難以入手時(shí),可從其對(duì)立事件入手計(jì)算.-19-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得1.求復(fù)雜事件的概率-20-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練2在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:(1)設(shè)X表示在這塊地上種植1季此作物的利潤(rùn),求X的分布列;(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.-20-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練2在一塊耕地上種植一-21-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4
解
(1)設(shè)A表示事件“此作物產(chǎn)量為300千克”,B表示事件“此作物市場(chǎng)價(jià)格為6元/千克”.由題設(shè)知P(A)=0.5,P(B)=0.4,∵利潤(rùn)=產(chǎn)量×市場(chǎng)價(jià)格-成本,∴X所有可能的取值為500×10-1
000=4
000,500×6-1
000=2
000,300×10-1
000=2
000,300×6-1
000=800.P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列為-21-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解(1)設(shè)A表示事-22-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4(2)設(shè)Ci表示事件“第i季利潤(rùn)不少于2
000元”(i=1,2,3),由題意知C1,C2,C3相互獨(dú)立,由(1)知,P(Ci)=P(X=4
000)+P(X=2
000)=0.3+0.5=0.8(i=1,2,3).3季的利潤(rùn)均不少于2
000元的概率為P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利潤(rùn)不少于2
000元的概率為所以,這3季中至少有2季的利潤(rùn)不少于2
000元的概率為0.512+0.384=0.896.-22-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4(2)設(shè)Ci表示事件“第i季-23-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例3(2016山東菏澤一模)某架飛機(jī)將5位空降兵空降到A,B,C三個(gè)地點(diǎn),每位空降兵都要空降到A,B,C中任意一個(gè)地點(diǎn),且空降到每一個(gè)地點(diǎn)的概率都是,用ξ表示地點(diǎn)C的空降人數(shù),求:(1)地點(diǎn)A空降1人,地點(diǎn)B,C各空降2人的概率;(2)隨機(jī)變量ξ的分布列與均值.思考二項(xiàng)分布滿足的條件有哪些?-23-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例3(2016山東菏澤一模)-24-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-24-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-25-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-25-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-26-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得1.獨(dú)立重復(fù)試驗(yàn)滿足的兩個(gè)條件:一是在同樣的條件下重復(fù)進(jìn)行;二是各次試驗(yàn)之間相互獨(dú)立.2.二項(xiàng)分布滿足的條件(1)在每次試驗(yàn)中,事件發(fā)生的概率是相同的.(2)各次試驗(yàn)中的事件是相互獨(dú)立的.(3)每次試驗(yàn)只有兩種結(jié)果:事件要么發(fā)生,要么不發(fā)生.(4)隨機(jī)變量是這n次獨(dú)立重復(fù)試驗(yàn)中事件發(fā)生的次數(shù).-26-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得1.獨(dú)立重復(fù)試驗(yàn)滿足-27-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練3某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購(gòu)買”字樣,購(gòu)買一瓶,其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為
.甲、乙、丙三名同學(xué)每人購(gòu)買了一瓶該飲料.(1)求甲中獎(jiǎng)且乙、丙都沒(méi)有中獎(jiǎng)的概率;(2)求中獎(jiǎng)人數(shù)X的分布列.-27-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練3某種有獎(jiǎng)銷售的飲料-28-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-28-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-29-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例4(1)(2016河南商丘三模)某地市高三理科學(xué)生有15000名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī)?chǔ)畏恼龖B(tài)分布N(100,σ2),已知P(80<ξ≤100)=0.35,若按成績(jī)分層抽樣的方式取100份試卷進(jìn)行分析,則應(yīng)從120分以上的試卷中抽取(
)A.5份 B.10份 C.15份 D.20份(2)在如圖所示的正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布N(0,1)的密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為(
)A.2386
B.2718C.3413
D.4772附:若X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6827,P(μ-2σ<X≤μ+2σ)=0.954.思考如何求正態(tài)分布在某一區(qū)間上的概率?-29-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例4(1)(2016河南商丘-30-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4答案:(1)C
(2)C
解析:
(1)∵數(shù)學(xué)成績(jī)?chǔ)畏恼龖B(tài)分布N(100,σ2),且P(80<ξ≤100)=0.35,∴P(80<ξ≤120)=2×0.35=0.70,∴P(ξ>120)=(1-0.70)=0.15.∴應(yīng)從120分以上的試卷中抽取100×0.15=15份,故選C.(2)由于曲線C為正態(tài)分布N(0,1)的密度曲線,所以P(-1<X<1)=0.683,由正態(tài)分布密度曲線的對(duì)稱性知P(0<X<1)≈0.341
5,即圖中陰影部分的面積為0.341
5.由幾何概型知點(diǎn)落入陰影部分的概率為因此,落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值為10
000×0.341
5=3
415.故選C.-30-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4答案:(1)C(2)C-31-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得解此類問(wèn)題的關(guān)鍵是利用正態(tài)曲線的對(duì)稱性,把待求區(qū)間內(nèi)的概率向已知區(qū)間內(nèi)的概率轉(zhuǎn)化.解題時(shí)要充分結(jié)合圖形進(jìn)行分析、求解,要注意數(shù)形結(jié)合思想及化歸思想的運(yùn)用.(1)熟記P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.(2)充分利用正態(tài)曲線的對(duì)稱性和曲線與x軸之間面積為1.①正態(tài)曲線關(guān)于直線x=μ對(duì)稱,從而在關(guān)于x=μ對(duì)稱的區(qū)間上概率相同.②P(X≤a)=1-P(X≥a),P(X≤μ-a)=P(X≥μ+a).-31-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得解此類問(wèn)題的關(guān)鍵是利-32-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練4(1)(2016山東青島一模)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),則函數(shù)f(x)=x2+2x+ξ不存在零點(diǎn)的概率為(
)(2)某班有50名學(xué)生,一次考試后數(shù)學(xué)成績(jī)X(X∈N)服從正態(tài)分布N(100,102),已知P(90≤X≤100)=0.3,估計(jì)該班學(xué)生數(shù)學(xué)成績(jī)?cè)?10分以上的人數(shù)為
.
-32-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練4(1)(2016山-33-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4答案:(1)C
(2)10
解析:
(1)∵函數(shù)f(x)=x2+2x+ξ不存在零點(diǎn),∴Δ=4-4ξ<0,∴ξ>1.∵隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),∴曲線關(guān)于直線x=1對(duì)稱,所以該班學(xué)生數(shù)學(xué)成績(jī)?cè)?10分以上的人數(shù)為0.2×50=10.-33-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4答案:(1)C(2)1012.4
二項(xiàng)分布與正態(tài)分布12.4二項(xiàng)分布與正態(tài)分布-35-知識(shí)梳理雙基自測(cè)23141.條件概率及其性質(zhì)
P(B|A)+P(C|A)-2-知識(shí)梳理雙基自測(cè)23141.條件概率及其性質(zhì)P(B|-36-知識(shí)梳理雙基自測(cè)23142.事件的相互獨(dú)立性(1)定義:設(shè)A,B為兩個(gè)事件,若P(AB)=
,則稱事件A與事件B相互獨(dú)立.
(2)性質(zhì):①若事件A與B相互獨(dú)立,則P(B|A)=
,P(A|B)=P(A),P(AB)=
.
③如果A1,A2,…,An相互獨(dú)立,那么P(A1A2…An)=
.
P(A)P(B)P(B)P(A)P(B)P(A1)P(A2)…P(An)-3-知識(shí)梳理雙基自測(cè)23142.事件的相互獨(dú)立性P(A)P-37-知識(shí)梳理雙基自測(cè)23143.獨(dú)立重復(fù)試驗(yàn)與二項(xiàng)分布(1)獨(dú)立重復(fù)試驗(yàn)是指在相同條件下可重復(fù)進(jìn)行的,各次試驗(yàn)之間相互獨(dú)立的一種試驗(yàn).在這種試驗(yàn)中,每一次試驗(yàn)只有兩種結(jié)果,即要么發(fā)生,要么不發(fā)生,且任何一次試驗(yàn)中各事件發(fā)生的概率都是一樣的.(2)在n次獨(dú)立重復(fù)試驗(yàn)中,用X表示事件A發(fā)生的次數(shù),設(shè)每次試驗(yàn)中事件A發(fā)生的概率為p,則P(X=k)=
,此時(shí)稱隨機(jī)變量X服從
,記作
,并稱p為成功概率.
二項(xiàng)分布
X~B(n,p)-4-知識(shí)梳理雙基自測(cè)23143.獨(dú)立重復(fù)試驗(yàn)與二項(xiàng)分布二項(xiàng)-38-知識(shí)梳理雙基自測(cè)23144.正態(tài)分布(1)正態(tài)曲線:函數(shù)
其中實(shí)數(shù)μ和σ(σ>0)為參數(shù).我們稱函數(shù)φμ,σ(x)的圖象為正態(tài)分布密度曲線,簡(jiǎn)稱正態(tài)曲線.(2)正態(tài)曲線的特點(diǎn)①曲線在x軸的上方,與x軸不相交;②曲線是單峰的,它關(guān)于直線x=μ對(duì)稱;④曲線與x軸之間的面積為1;⑤當(dāng)σ一定時(shí),曲線隨著μ的變化而沿x軸平移;⑥當(dāng)μ一定時(shí),曲線的形狀由σ確定.σ越大,曲線越“矮胖”,總體分布越分散;σ越小,曲線越“瘦高”,總體分布越集中.-5-知識(shí)梳理雙基自測(cè)23144.正態(tài)分布-39-知識(shí)梳理雙基自測(cè)2314(3)正態(tài)分布的定義及表示:若對(duì)于任何實(shí)數(shù)a,b(a<b),隨機(jī)變量X滿足,則稱隨機(jī)變量X服從正態(tài)分布,記作
.
正態(tài)總體在三個(gè)特殊區(qū)間內(nèi)取值的概率值①P(μ-σ<X≤μ+σ)=
;
②P(μ-2σ<X≤μ+2σ)=
;
③P(μ-3σ<X≤μ+3σ)=
.
X~N(μ,σ2)0.68270.95450.9973-6-知識(shí)梳理雙基自測(cè)2314(3)正態(tài)分布的定義及表示:若2-40-知識(shí)梳理雙基自測(cè)3415答案答案關(guān)閉(1)×
(2)×
(3)×
(4)√
(5)√1.下列結(jié)論正確的打“√”,錯(cuò)誤的打“×”.(1)條件概率一定不等于它的非條件概率.(
)(2)對(duì)于任意兩個(gè)事件,公式P(AB)=P(A)P(B)都成立.(
)(3)二項(xiàng)分布是一個(gè)概率分布,其公式相當(dāng)于(a+b)n二項(xiàng)展開式的通項(xiàng)公式,其中的a=p,b=1-p.(
)(4)若事件A,B相互獨(dú)立,則P(B|A)=P(B).(
)(5)X服從正態(tài)分布,通常用X~N(μ,σ2)表示,其中參數(shù)μ和σ2分別表示正態(tài)分布的均值和方差.(
)2-7-知識(shí)梳理雙基自測(cè)3415答案答案關(guān)閉(1)×-41-知識(shí)梳理雙基自測(cè)23415答案解析解析關(guān)閉答案解析關(guān)閉2.袋中有3紅5黑共8個(gè)大小形狀相同的小球,不放回地依次從中摸出兩個(gè)小球,則在第一次摸得紅球的條件下,第二次仍是紅球的概率為(
)-8-知識(shí)梳理雙基自測(cè)23415答案解析解析關(guān)閉答案-42-知識(shí)梳理雙基自測(cè)234153.(2016河南焦作二模)某射擊手射擊一次命中的概率是0.7,連續(xù)兩次均射中的概率是0.4,已知某次射中,則隨后一次射中的概率是(
)答案解析解析關(guān)閉答案解析關(guān)閉-9-知識(shí)梳理雙基自測(cè)234153.(2016河南焦作二模)-43-知識(shí)梳理雙基自測(cè)23415答案解析解析關(guān)閉答案解析關(guān)閉-10-知識(shí)梳理雙基自測(cè)23415答案解析解析關(guān)閉答-44-知識(shí)梳理雙基自測(cè)234155.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為
.
(附:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.3%,P(μ-2σ<ξ<μ+2σ)=95.4%.)答案解析解析關(guān)閉答案解析關(guān)閉-11-知識(shí)梳理雙基自測(cè)234155.已知某批零件的長(zhǎng)度誤差-45-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例1(1)把一枚硬幣連續(xù)拋兩次,記“第一次出現(xiàn)正面”為事件A,“第二次出現(xiàn)反面”為事件B,則P(B|A)等于(
)(2)(2016河南平頂山高三期末)從1,2,3,4,5中任取2個(gè)不同的數(shù),事件A為“取到的2個(gè)數(shù)之和為偶數(shù)”,事件B為“取到的2個(gè)數(shù)均為偶數(shù)”,則P(B|A)等于(
)思考求條件概率有哪些基本的方法?答案解析解析關(guān)閉答案解析關(guān)閉-12-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例1(1)把一枚硬幣連續(xù)拋兩-46-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-13-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-47-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練1(1)(2016湖南永州三模)袋中有大小完全相同的2個(gè)紅球和3個(gè)黑球,不放回地摸出2個(gè)球,設(shè)“第一次摸出紅球”為事件A,“摸得的2個(gè)球同色”為事件B,則概率P(B|A)為(
)(2)盒中有紅球5個(gè),藍(lán)球11個(gè),其中紅球中有2個(gè)玻璃球,3個(gè)木質(zhì)球;藍(lán)球中有4個(gè)玻璃球,7個(gè)木質(zhì)球.現(xiàn)從中任取一球,假設(shè)每個(gè)球被取到的可能性相同.若取到的球是玻璃球,則它是藍(lán)球的概率為
.
答案解析解析關(guān)閉答案解析關(guān)閉-14-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練1(1)(2016湖-48-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例2(2016北京,理16)A,B,C三個(gè)班共有100名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過(guò)分層抽樣獲得了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)):(1)試估計(jì)C班的學(xué)生人數(shù);(2)從A班和C班抽出的學(xué)生中,各隨機(jī)選取一人,A班選出的人記為甲,C班選出的人記為乙.假設(shè)所有學(xué)生的鍛煉時(shí)間相互獨(dú)立,求該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長(zhǎng)的概率;-15-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例2(2016北京,理16)-49-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4(3)再?gòu)腁,B,C三個(gè)班中各隨機(jī)抽取一名學(xué)生,他們?cè)撝艿腻憻挄r(shí)間分別是7,9,8.25(單位:小時(shí)),這3個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為μ1,表格中數(shù)據(jù)的平均數(shù)記為μ0,試判斷μ0和μ1的大小.(結(jié)論不要求證明)思考如何求復(fù)雜事件的概率?求相互獨(dú)立事件同時(shí)發(fā)生的概率有哪些常用的方法?-16-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4(3)再?gòu)腁,B,C三個(gè)班中-50-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-17-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-51-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-18-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-52-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得1.求復(fù)雜事件的概率,要正確分析復(fù)雜事件的構(gòu)成,將復(fù)雜事件轉(zhuǎn)化為幾個(gè)彼此互斥的事件的和事件或轉(zhuǎn)化為幾個(gè)相互獨(dú)立事件同時(shí)發(fā)生的積事件,然后求概率.2.求相互獨(dú)立事件同時(shí)發(fā)生的概率的方法(1)利用相互獨(dú)立事件的概率乘法公式直接求解.(2)直接計(jì)算較煩瑣或難以入手時(shí),可從其對(duì)立事件入手計(jì)算.-19-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得1.求復(fù)雜事件的概率-53-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練2在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:(1)設(shè)X表示在這塊地上種植1季此作物的利潤(rùn),求X的分布列;(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.-20-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練2在一塊耕地上種植一-54-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4
解
(1)設(shè)A表示事件“此作物產(chǎn)量為300千克”,B表示事件“此作物市場(chǎng)價(jià)格為6元/千克”.由題設(shè)知P(A)=0.5,P(B)=0.4,∵利潤(rùn)=產(chǎn)量×市場(chǎng)價(jià)格-成本,∴X所有可能的取值為500×10-1
000=4
000,500×6-1
000=2
000,300×10-1
000=2
000,300×6-1
000=800.P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列為-21-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解(1)設(shè)A表示事-55-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4(2)設(shè)Ci表示事件“第i季利潤(rùn)不少于2
000元”(i=1,2,3),由題意知C1,C2,C3相互獨(dú)立,由(1)知,P(Ci)=P(X=4
000)+P(X=2
000)=0.3+0.5=0.8(i=1,2,3).3季的利潤(rùn)均不少于2
000元的概率為P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利潤(rùn)不少于2
000元的概率為所以,這3季中至少有2季的利潤(rùn)不少于2
000元的概率為0.512+0.384=0.896.-22-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4(2)設(shè)Ci表示事件“第i季-56-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例3(2016山東菏澤一模)某架飛機(jī)將5位空降兵空降到A,B,C三個(gè)地點(diǎn),每位空降兵都要空降到A,B,C中任意一個(gè)地點(diǎn),且空降到每一個(gè)地點(diǎn)的概率都是,用ξ表示地點(diǎn)C的空降人數(shù),求:(1)地點(diǎn)A空降1人,地點(diǎn)B,C各空降2人的概率;(2)隨機(jī)變量ξ的分布列與均值.思考二項(xiàng)分布滿足的條件有哪些?-23-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例3(2016山東菏澤一模)-57-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-24-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-58-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-25-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-59-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得1.獨(dú)立重復(fù)試驗(yàn)滿足的兩個(gè)條件:一是在同樣的條件下重復(fù)進(jìn)行;二是各次試驗(yàn)之間相互獨(dú)立.2.二項(xiàng)分布滿足的條件(1)在每次試驗(yàn)中,事件發(fā)生的概率是相同的.(2)各次試驗(yàn)中的事件是相互獨(dú)立的.(3)每次試驗(yàn)只有兩種結(jié)果:事件要么發(fā)生,要么不發(fā)生.(4)隨機(jī)變量是這n次獨(dú)立重復(fù)試驗(yàn)中事件發(fā)生的次數(shù).-26-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4解題心得1.獨(dú)立重復(fù)試驗(yàn)滿足-60-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練3某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購(gòu)買”字樣,購(gòu)買一瓶,其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為
.甲、乙、丙三名同學(xué)每人購(gòu)買了一瓶該飲料.(1)求甲中獎(jiǎng)且乙、丙都沒(méi)有中獎(jiǎng)的概率;(2)求中獎(jiǎng)人數(shù)X的分布列.-27-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4對(duì)點(diǎn)訓(xùn)練3某種有獎(jiǎng)銷售的飲料-61-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-28-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4-62-考點(diǎn)1考點(diǎn)2考點(diǎn)3考點(diǎn)4例4(1)(2016河南商丘三模)某地市高三理科學(xué)生有15000名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī)?chǔ)畏恼龖B(tài)分布N(100,σ2),已知P(80<ξ≤100)=0.35,若按成績(jī)分層抽樣的方式取100份試卷進(jìn)行分析,則應(yīng)從120分以上的試卷中抽取(
)A.5份 B.10份 C.15份 D.20份(2)在如圖所示的正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布N(0,1)的密度曲
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度個(gè)人之間農(nóng)業(yè)貸款借款合同
- 家長(zhǎng)與孩子二零二五年度家務(wù)勞動(dòng)責(zé)任履行協(xié)議
- 2025年度泳池救生員安全責(zé)任及應(yīng)急響應(yīng)規(guī)范協(xié)議
- 2025年度智慧城市建設(shè)預(yù)付款合作合同
- 二零二五年度酒店管理營(yíng)業(yè)執(zhí)照及品牌加盟轉(zhuǎn)讓合同
- 二零二五年度房屋維修基金頂賬返還協(xié)議書
- 二零二五年度外墻保溫涂料產(chǎn)品環(huán)保認(rèn)證與綠色標(biāo)識(shí)合同
- 二零二五年度女方婚前財(cái)產(chǎn)協(xié)議婚姻安全與婚姻風(fēng)險(xiǎn)規(guī)避合同
- 二零二五年度裝配行業(yè)產(chǎn)品研發(fā)終止合同
- 石家莊市2025年度勞動(dòng)合同電子化管理規(guī)范
- 幼兒園公開課:大班語(yǔ)言《相反國(guó)》課件(優(yōu)化版)
- 水利設(shè)施維護(hù)投標(biāo)方案(技術(shù)標(biāo))
- 2024屆湖南省長(zhǎng)沙市湖南師大附中等校高三上學(xué)期月考(二)語(yǔ)文試題(解析版)
- 上??萍及嫘W(xué)二年級(jí)下冊(cè)綜合實(shí)踐活動(dòng)全冊(cè)教案
- 氣缸磨損的測(cè)量說(shuō)課教案
- 《高鐵乘務(wù)安全管理及應(yīng)急處置》課程教案-崔藝琳編寫
- 新課程標(biāo)準(zhǔn)2022版初中歷史考試題及答案
- 前言 馬克思主義中國(guó)化時(shí)代化的歷史進(jìn)程與理論成果
- 產(chǎn)品可靠性測(cè)試計(jì)劃
- 心理健康與職業(yè)生涯(中職)PPT完整全套教學(xué)課件
- 中國(guó)文藝美學(xué)要略·論著·《畫學(xué)心法問(wèn)答》
評(píng)論
0/150
提交評(píng)論