下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ChapterChapterNumericalDescriptive Chap3-LearningInthischapter,youTodescribethepropertiesofcentraltendency集中趨勢(shì),variation變異程度,andshape分布形狀innumericaldataToconstructandinterpretaboxplotTocomputedescriptivesummarymeasuresforaTocomputethecovarianceandthecoefficientofcorrelation相關(guān)系數(shù) Chap3-Summary
Thecentraltendencyistheextenttowhichallthedatavaluesgrouparoundatypicalorcentralvalue.ThevariationistheamountofdispersionorscatteringofvaluesTheshapeisthepatternofthedistributionofvaluesfromthelowestvaluetothehighestvalue. Chap3-ChapterMean均值median中位數(shù)modeRange全距quartile四分位數(shù),interquartilerange四分位間距,variance方差andstandarddeviation標(biāo)準(zhǔn)差,coefficientofvariation變異系數(shù),Z-scoresshapeofdistributionSkewness&Kurtosis5-numbersummary五值概括 Chap3-Chapter
DiscussedcovarianceandcorrelationAddressedpitfallsinnumericaldescriptivemeasuresandethicalconsiderations描述性數(shù)值 Chap3-MeasuresofCentralTendency:TheMean算術(shù)平均數(shù)Thearithmeticmean(oftenjustcalledthe“mean”)isthemostcommonmeasureofcentralTheithForasampleTheithPronouncedPronouncedx-nXin
XXnObservedX nObserved SampleSample Chap3-MeasuresofCentralTendency:TheMean
ThemostcommonmeasureofcentralMean=sumofvaluesdividedbythenumberofAffectedbyextremevalues(outliers) 111213141516171819 111213141516171819MeanMean=Mean=111213141565
111213142070 Chap3-111213141516171819 Chap3-111213141516171819 111213141516171819MeanMean=Mean=111213141565
111213142070 Chap3-MeasuresofCentralTendency:TheMedian中位數(shù)Inanorderedarray有序數(shù)組themedianisthe“middle”number(50%above,50%below)111213141516171819 111213141516171819Median=Median=Median=Notaffectedbyextremevalues Chap3-MeasuresofCentralTendency:LocatingtheMedian中位數(shù)的位置Thelocationofthemedianwhenthevaluesareinnumerical(smallesttoMedianMedianpositionn2positionintheorderedIfthenumberofvaluesisodd奇數(shù)themedianistheIfthenumberofvaluesiseven偶數(shù)themedianistheaverageofthetwomiddlenumbers兩個(gè)中間的數(shù)的和NoteNoten2isnotthevalueofthemedianonlytheposition位ofthemedianintheranked Chap3-MeasuresofCentralTendency:TheMode眾數(shù)ValuethatoccursmostoftenNotaffectedbyextremevaluesUsedforeithernumericalorcategoricalTheremaybenomodeTheremaybeseveralmodes Mode=
NoNoMeasuresofCentralTendency:ReviewExampleHouseHouse Sum$= rankedddata=$300,000 = Chap3-MeasuresofCentralTendency: easuretoChoose?Themeanisgenerallyused,unlessextremevaluesThemedianisoftenused,sincethemedianisnotsensitivetoextremevalues.Forexample,medianhomepricesmaybereportedforaregion;itislesssensitivetoInsomesituationsitmakessensetoreportboththemeanandthemedian.必要的情況下,可以同 Chap3-MeasuresofCentralTendency:nnX n
Middlevalueintheordered
Chap3-
Thecentraltendencyistheextenttowhichallthedatavaluesgrouparoundatypicalorcentralvalue.ThevariationistheamountofdispersionorscatteringofvaluesTheshapeisthepatternofthedistributionofvaluesfromthelowestvaluetothehighestvalue.MeasuresofVariationofof變異方全Standard標(biāo)準(zhǔn)Samecenter,differentvariationMeasuresofvariationgiveinformationonthespreadorvariabilityordispersion散布o(jì)fthedataSamecenter,differentvariation Chap3-MeasuresofVariation:TheRangeSimplestmeasureof
DifferencebetweenthelargestandthesmallestRange=Xlargest– Range=13-1= Chap3-MeasuresofWhyTheRangeCanBeIgnoresthewayinwhichdataare
Range=12-7=
Range=12-7= Sensitivetooutliers Range=5-1= Range=120-1= Chap3- Chap3-n(Xn(X 2i n-TheSampleVarianceAverage(approxima yofsquareddeviationsofvaluesfromthemeanSample X=arithmeticn=sampleXi=ithvalueofthevariable Chap3-MeasuresofTheSampleStandardMostcommonlyusedmeasureofShowsvariationabouttheIsthesquarerootoftheHasthesameunitsastheoriginalnn(X 2iS n-Samplestandard
Chap3-MeasuresofVariation:TheStandardDeviationStepsforComputingStandard計(jì)算步
ComputethedifferencebetweeneachvalueandtheSquareeachAddthesquaredDividethistotalbyn-1togetthesampleTakethesquarerootofthesamplevariancetothesamplestandard Chap3-MeasuresofVariation:SampleStandardDeviationCalculationExample
nn= Mean=X= Chap3-MeasuresofVariation:SampleStandardDeviationCalculationExample
nn= Mean=X=(10(10X)2(12X)2(14X)2(24X)2n((1016)2(1216)2(1416)2(2416)813074.3095Ameasure13074.3095 scatteraroundthe Chap3-MeasuresofVariation:ComparingStandardDeviationsDataDataMean=S= Mean=S=DataDataMean=S= Mean=S=MeanMean=S=D Chap3-MeasuresofVariation:ComparingStandardDeviationsSmallerstandardLargerstandard Chap3-MeasuresofVariation:SummaryCharacteristicsThemorethedataarespreadout,thegreatertherange,variance,andstandarddeviation.Themorethedataareconcentrated,thesmallertherange,variance,andstandarddeviation.Ifthevaluesareallthesame(novariation),allthesemeasureswillbezero.Noneofthesemeasuresareever Chap3-MeasuresofTheCoefficientof
MeasuresrelativevariationAlwaysinpercentageShowsvariationrelativetomean標(biāo)準(zhǔn)差/Canbeusedtocomparethevariabilityoftwoormoresetsofdatameasuredindifferentunits便于比較兩組或多組不同單位度量的數(shù)CVCVS100%X Chap3-MeasuresofComparingCoefficientsofStockAveragepricelastyear=Bothstockshavethesamedeviation,butstockBislessvariablerelativetoitspriceStandarddeviationBothstockshavethesamedeviation,butstockBislessvariablerelativetoitspriceSCVA100%X
100%StockAveragepricelastyear=Standarddeviation=S X
100%
100% Chap3-MeasuresofComparingCoefficientsofStockAveragepricelastyear=Standarddeviation=
SCVA X
StockAveragepricelastyear=Standarddeviation=S StockChasamuchsmallerdeviationbutamuchhighercoefficientofStockChasamuchsmallerdeviationbutamuchhighercoefficientofX
100%
100% Chap3-如果StockABC均呈正太分布,試下畫出他們 Chap3-LocatingExtreme TocomputetheZ-scoreofadatavalue,subtractthemeananddividebythestandarddeviation.TheZ-scoreisthenumberofstandarddeviationsadatavalueisfromthemean.Adatavalueisconsideredanextremeoutlierifitsscoreislessthan-3.0orgreaterthanZ值大于3或小于-3ThelargertheabsolutevalueoftheZ-score,thefartherthedatavalueisfromthemean. Chap3-LocatingExtremeOutliers:ZXSwhereXrepresentsthedatavalueXisthesamplemeanSisthesamplestandard Chap3-LocatingExtremeOutliers:SupposethemeanmathSATscoreis490,withastandarddeviationof100.ZXX620490130 Ascoreof620is1.3standarddeviationsabovethemeanandwouldnotbeconsideredanoutlier. Chap3-ShapeofaDistributionDescribeshowdataareTwousefulshaperelatedstatisticsMeasurestheamountofasymmetryinadistribution對(duì)稱程度Measurestherelativeconcentrationofvaluesinthecenterofadistributionascomparedwiththetails峰的平緩程度 Chap3-
Thecentraltendencyistheextenttowhichallthedatavaluesgrouparoundatypicalorcentralvalue.ThevariationistheamountofdispersionorscatteringofvaluesTheshapeisthepatternofthedistributionofvaluesfromthelowestvaluetothehighestvalue.ShapeofaDistribution
DescribestheamountofasymmetryinSymmetricorMeanMean<Mean=Mean>Skewness<0 Chap3-ShapeofaDistribution
DescribesrelativeconcentrationofvaluesinthecenterascomparedtothetailsFlatterThanFlatterThanBell-SharperPeakThanBell-Shaped<0 Chap3-
Quartilessplittherankeddatainto4segmentswithanequalnumberofvaluespersegment把數(shù)據(jù)集 quartile,Q1,isthevalueforwhich25%ofobservationsaresmallerand75%are75%的數(shù)Q125%Q2isthesameasthemedian(50%ofthearesmallerand50arelarger)Only25%oftheobservationsaregreaterthanthe Chap3-QuartileMeasures:LocatingQuartilesFindaquartilebydeterminingthevalueintheappropriatepositionintherankeddata,where
quartileQ1= rankedQ2= rankedQ3=3(n+1)/4rankedSecondquartileposition:Thirdquartileposition:wherenisthenumberofobserved Chap3-QuartileMeasures:CalculationRulesWhencalculatingtherankedpositionusethefollowingrulesIftheresultisawholenumberthenitisthepositiontouseIftheresultisafractionalhalf(e.g.2.5,7.5,8.5,etc.) agethetwocorrespondingdatavalues.Iftheresultisnotawholenumberorafractionalhalfthenroundtheresulttothenearestintegertofindtherankedposition.分?jǐn)?shù),就近取整 Chap3-QuartileMeasures:LocatingQuartiles
SampleSampleDatainOrderedArray: Q1 Chap3-QuartileMeasures:LocatingQuartiles
SampleSampleDatainOrderedArray: (n=Q1isin
(9+1)/4=2.5of(9+1)/4=2.5sousethevaluehalfwaybetweenthe2ndand3rdQ1Q1=QQ1andQ3aremeasuresofnon-centralQ2=median,isameasureofcentral Chap3-QuartileMeasures:LocatingQuartiles
SampleSampleDatainOrderedArray: Q2,Q3 Chap3-QuartileQuartileCalculatingTheQuartiles:SampleDatainOrderedArray: (n=Q1isinthe(9+1)/4=2.5positionoftheranked Q1=(12+13)/2=Q2isinthe(9+1)/2=5thpositionoftheranked Q2=median=Q3isinthe3(9+1)/4=7.5positionoftheranked Q3=(18+21)/2=QQ1andQ3aremeasuresofnon-centralQ2=median,isameasureofcentral Chap3-QuartileTheInterquartileRange
TheIQRisQ3–Q1andmeasuresthespreadinmiddle50%oftheTheIQRisalsocalledthemidspreadbecauseitcoversthemiddle50%ofthedata居中的一半 influencedbyoutliersorextremevaluesMeasureslikeQ1,Q3,andIQRthatarenotinfluencedbyoutliersarecalledresistantmeasures有抵抗力的度 Chap3-CalculatingTheInterquartileExampleboxplotX X
Interquartile=57–30= Chap3-TheFive-Number
Thefivenumbersthathelpdescribethecenter,spreadandshapeofdataare:QuartileMedianThirdQuartile Chap3-Five-NumberSum TheBoxplot盒須圖
----TheBoxplot:AGraphicaldisplayofthedatabasedonthefive-numbersummary:25%ofofof25%of Chap3-Relationshipsamongthefive-number nddistributionshape
左中位數(shù)>Right-右中位數(shù)<Median–>Xlargest–Median–≈Xlargest–Median–<Xlargest–Q1–>Xlargest–Q1–≈Xlargest–Q1–<Xlargest–Median–>Q3–Median–≈Q3–Median–<Q3– Chap3-Five-NumberSummary:ShapeofBoxplots
Ifdataaresymmetricaroundthemedianthentheboxandcentrallinearecenteredbetween ABoxplotcanbeshownineitheraverticalororientation Chap3-DistributionShapeandTheBoxplot
Left- Right- Q2
Q1Q2 Chap3-BoxplotBelowisaBoxplotforthefollowing
0235 0235 2 Thedataarerightskewed,astheplot Chap3-NumericalDescriptiveMeasuresforaPopulationDescriptivestatisticsdiscussedpreviouslydescribedasamplenotthepopulation.Summarymeasuresdescribingapopulation,parametersaredenotedwithGreekImportantpopulationparametersarethepopulationmean,variance,andstandarddeviation. Chap3-NumericalDescriptiveMeasuresforaPopulation:Themeanμ
Thepopulationmeanisthesumofthevaluesinthepopulationdividedbythepopulationsize,N XiNXXNN μ=populationN=populationXi=ithvalueofthevariable Chap3-NumericalDescriptiveMeasuresForAPopulation:TheVarianceσ2N(X2iN(X2i NPopulation μ=populationN=populationXi=ithvalueofthevariable Chap3-NumericalDescriptiveMeasuresForAPopulation:TheStandardDeviationσMostcommonlyusedmeasureofShowsvariationaboutthemeanIsthesquareroot平方根ofthepopulationHasthesameunitsastheoriginalN(XN(X2iσ N Chap3-SamplestatisticsversuspopulationparametersXSS Chap3-TheEmpiricalRuleTheempiricalruleapproximatesthevariationofdatainabell-shapeddistribution經(jīng)驗(yàn)法則利用鐘形分 y68%ofthedatainabelldistributioniswithin±onestandarddeviationofthemeanorμ1σ68%觀測(cè)值落在均值兩邊
μ
TheEmpirical y95%ofthedatainabell-
distributionlieswithin±twostandarddeviationsofmean,orμ± y99.7%ofthedatainabell-shapeddistributionlieswithin±threestandarddeviationsofthemean,orμ±3σμ
μUsingtheEmpirical
SupposethatthevariableMathSATscoresisbell-shapedwithameanof500andastandarddeviationof90.Then,68%ofalltesttakersscoredbetween410and(500±95%ofalltesttakersscoredbetween320and680(500±180).99.7%ofalltesttakersscoredbetween230and(500±Regardlessofhowthedataaredistributed,atleast(1-1/k2)x100%ofthevalueswillfallwithinkstandarddeviationsofthemean(fork>1)AtAt(1-1/22)x100%=75%…........k=2(μ±(1-1/32)x100%=89%……….k=3(μ± Chap3- Chap3-
Thecovariancemeasuresthestrengthoftherelationshipbetweentwonumericalvariables(X&Thesamplecovariance:nn cov(X,Y) (XiX)(YinOnlyconcernedwiththestrengthoftheNocausaleffectisimplied Chap3-InterpretingCovariancebetweentwo
cov(X,Y)>cov(X,Y)<
XandYtendtomoveinthesameXandYtendtomoveinoppositecov(X,Y)= XandYareThecovariancehasamajorflaw主要劣勢(shì)Itisnotpossibletodeterminetherelativestrengthoftherelationshipfromthesizeofthecovariance協(xié)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)題庫(kù)練習(xí)試卷A卷附答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)強(qiáng)化訓(xùn)練試卷A卷附答案
- 2024年度年福建省高校教師資格證之高等教育學(xué)每日一練試卷B卷含答案
- 2024年數(shù)據(jù)采集傳輸系統(tǒng)項(xiàng)目資金籌措計(jì)劃書代可行性研究報(bào)告
- 2024年阿米妥投資申請(qǐng)報(bào)告
- 第21章 惡性腫瘤流行病學(xué)課件
- 2024年產(chǎn)權(quán)商鋪?zhàn)赓U買賣一體協(xié)議
- 2024合作社商用物業(yè)租賃協(xié)議范本
- 2024年農(nóng)藥采購(gòu)協(xié)議:高效環(huán)保
- 2024年度玻璃鋼材質(zhì)化糞池購(gòu)銷協(xié)議
- 服務(wù)與服務(wù)意識(shí)培訓(xùn)課件
- 第5課《秋天的懷念》群文教學(xué)設(shè)計(jì) 統(tǒng)編版語(yǔ)文七年級(jí)上冊(cè)
- 二年級(jí)家長(zhǎng)會(huì)語(yǔ)文老師課件
- 冬季安全生產(chǎn)特點(diǎn)及預(yù)防措施
- 視頻短片制作合同范本
- 結(jié)構(gòu)加固改造之整體結(jié)構(gòu)加固教學(xué)課件
- 高中數(shù)學(xué)-3.3 冪函數(shù)教學(xué)課件設(shè)計(jì)
- 抑郁癥與睡眠障礙課件
- 創(chuàng)新思維與創(chuàng)業(yè)實(shí)驗(yàn)-東南大學(xué)中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫(kù)2023年
- 第九講 全面依法治國(guó)PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 內(nèi)部控制學(xué)李曉慧課后參考答案
評(píng)論
0/150
提交評(píng)論