s黑帶培訓教材英文 3_第1頁
s黑帶培訓教材英文 3_第2頁
s黑帶培訓教材英文 3_第3頁
s黑帶培訓教材英文 3_第4頁
s黑帶培訓教材英文 3_第5頁
已閱讀5頁,還剩68頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ProcessCapabilityAnalysis(MeasurePhase)ScopeofModuleProcessVariationProcessCapabilitySpecification,ProcessandControlLimitsProcessPotentialvsProcessPerformanceShort-TermvsLong-TermProcessCapabilityProcessCapabilityforNon-NormalDataCycle-Time (ExponentialDistribution)RejectRate (BinomialDistribution)DefectRate (PoissonDistribution)ProcessVariationProcessVariationistheinevitabledifferencesamongindividualmeasurementsorunitsproducedbyaprocess.SourcesofVariationwithinunit (positionalvariation)betweenunits (unit-unitvariation)betweenlots (lot-lotvariation)betweenlines (line-linevariation)acrosstime (time-timevariation)measurementerror (repeatability&reproducibility)TypesofVariationInherentorNaturalVariationDuetothecumulativeeffectofmanysmallunavoidablecausesAprocessoperatingwithonlychancecausesofvariationpresentissaidtobe“instatisticalcontrol”TypesofVariationSpecialorAssignableVariationMaybedueto a)improperlyadjustedmachine b)operatorerror c)defectiverawmaterialAprocessoperatinginthepresenceofassignablecausesofvariationissaidtobe“out-of-control”ProcessCapabilityProcessCapabilityistheinherentreproducibilityofaprocess’soutput.Itmeasureshowwelltheprocessiscurrentlybehavingwithrespecttotheoutputspecifications.Itreferstotheuniformityoftheprocess.Capabilityisoftenthoughtofintermsoftheproportionofoutputthatwillbewithinproductspecificationtolerances.Thefrequencyofdefectivesproducedmaybemeasuredina) percentage(%)b) partspermillion(ppm)c) partsperbillion(ppb)ProcessCapabilityProcessCapabilitystudiescan

indicatetheconsistencyoftheprocessoutputindicatethedegreetowhichtheoutputmeetsspecificationsbeusedforcomparisonwithanotherprocessorcompetitorProcessCapabilityvsSpecificationLimitsa)b)c)a)Processishighlycapableb)Processismarginallycapablec)ProcessisnotcapableThreeTypesofLimitsSpecificationLimits(LSLandUSL)createdbydesignengineeringinresponsetocustomerrequirementstospecifythetoleranceforaproduct’scharacteristicProcessLimits(LPLandUPL)measuresthevariationofaprocessthenatural6limitsofthemeasuredcharacteristicControlLimits(LCLandUCL)measuresthevariationofasamplestatistic(mean,variance,proportion,etc)ThreeTypesofLimitsDistributionofIndividualValuesDistributionofSampleAveragesProcessCapabilityIndicesTwomeasuresofprocesscapabilityProcessPotentialCpProcessPerformanceCpuCplCpkProcessPotentialTheCpindexassesseswhetherthenaturaltolerance(6)ofaprocessiswithinthespecificationlimits.ProcessPotentialACpof1.0indicatesthataprocessisjudgedtobe““capable””,i.e.iftheprocessiscenteredwithinitsengineeringtolerance,0.27%ofpartsproducedwillbebeyondspecificationlimits.CpRejectRate1.000.270%1.330.007%1.506.8ppm2.002.0ppbProcessPotentiala)b)c)a)Processishighlycapable(Cp>2)b)Processiscapable(Cp=1to2)c)Processisnotcapable(Cp<1)ProcessPotentialTheCpindexcomparestheallowablespread(USL-LSL)againsttheprocessspread(6).Itfailstotakeintoaccountiftheprocessisnotcenteredbetweenthespecificationlimits.ProcessiscenteredProcessisnotcenteredProcessPerformanceTheCpkindexrelatesthescaleddistancebetweentheprocessmeanandthenearestspecificationlimit.ProcessPerformanceCpkRejectRate1.00.13–0.27%1.10.05–0.10%1.20.02–0.03%1.348.1–96.2ppm1.413.4–26.7ppm1.53.4–6.8ppm1.6794–1589ppb1.7170–340ppb1.833–67ppb1.96––12ppb2.01––2ppbProcessPerformancea)Processishighlycapable(Cpk>1.5)b)Processiscapable(Cpk=1to1.5)c)Processisnotcapable(Cpk<1)a)Cp=2Cpk=2b)Cp=2Cpk=1c)Cp=2Cpk<1Example1SpecificationLimits: 4to16gMachineMeanStdDev(a)104(b)102(c)72(d)131DeterminethecorrespondingCpandCpkforeachmachine.Example1AExample1BExample1CExample1DProcessCapabilityForanormallydistributedcharacteristic,thedefectiverateF(x)maybeestimatedviathefollowing:Forcharacteristicswithonlyonespecificationlimit:a) LSLonlyb) USLonlyLSLUSLExample2SpecificationLimits: 4to16gMachineMeanStdDev(a)104(b)102(c)72(d)131Determinethedefectiverateforeachmachine.Example2MeanStdDevZLSLZUSLF(x<LSL)F(x>USL)F(x)104-1.51.566,80766,807133,614102-3.03.01,3501,3502,70072-1.54.566,807366,811131-9.03.001,3501,350LowerSpecLimit=4gUpperSpecLimit=16gProcessPotentialvsProcessPerformance(a)PoorProcessPotential (b)PoorProcessPerformanceLSLUSLLSLUSLExperimentalDesigntoreducevariationExperimentalDesigntocentermeantoreducevariationProcessPotentialvsProcessPerformanceProcessPotentialIndex(Cp)Cpk1.01.82.01.02,699.91,363.31,350.01,350.01,350.01,350.01.2318.3159.9159.1159.1159.11.426.713.413.40.10.02.00.0DefectiveRate(measuredindppm)isdependentontheactualcombinationofCpandCpk..ProcessPotentialvsProcessPerformancea)Cp=2Cpk=2b)Cp=2Cpk=1c)Cp=2Cpk<1Cp–CpkMissedOpportunityAlternativeProcessPerformanceIndexProcesscapabilitystatisticsmeasureprocessvariationrelativetospecificationlimits.TheCpstatisticcomparestheengineeringtoleranceagainsttheprocess’snaturalvariation.TheCpkstatistictakesintoaccountthelocationoftheprocessrelativetothemidpointbetweenspecifications.Iftheprocesstargetisnotcenteredbetweenspecifications,theCpmstatisticispreferred.ProcessStabilityAprocessisstableifthedistributionofmeasurementsmadeonthegivenfeatureisconsistentovertime.TimeStableProcessTimeUnstableProcessucllclucllclWithinvsOverallCapabilityWithinCapability(previouslycalledshort-termcapability)showstheinherentvariabilityofamachine/processoperatingwithinabriefperiodoftime.OverallCapability(previouslycalledlong-termcapability)showsthevariabilityofamachine/processoperatingoveraperiodoftime.Itincludessourcesofvariationinadditiontotheshort-termvariability.WithinvsOverallCapabilityWithinOverallSampleSize30––50units100unitsNumberofLotssinglelotseverallotsPeriodofTimehoursordaysweeksormonthsNumberofOperators singleoperatordifferentoperatorsProcessPotentialCpPpProcessPerformanceCpkPpkWithinvsOverallCapabilityWithinCapabilityOverallCapabilityThekeydifferencebetweenthetwosetsofindicesliesintheestimatesforWithinandOverall.EstimatingWithinandOverallConsiderthefollowingobservationsfromaControlChart:S/NX1X2…XkMean Range StdDev1 x1,1x2,1…xk,1X1R1S12 x1,2x2,2…xk,2X2R2S2:::::::m x1,mx2,m…xk,mXmRmSmTheoverallvariationOverallisestimatedby–––EstimatingWithinandOverallThewithinvariationWithinmaybeestimatedbyoneofthefollowing:(a)R-barMethodwhere d2isaShewhartconstant=(k)(b)S-barMethodwhere c4isaShewhartconstant=(k)(c)PooledStandardDeviationMethodInMiniTab,thePooledStandardDeviationisthedefaultmethod.EstimatingWithinandOverallIncaseswherethereisonly1observationpersub-group(i.e.k=1),theMovingRangeMethodisused,where.ThewithinvariationWithinisthenestimatedusingeithera) theAverageMovingRange:b) theMedianMovingRange:Example3Thelengthofacamshaftforanautomobileengineisspecifiedat600±2mm.Controlofthelengthofthetoavoidscrap/rework.Thecamshaftisprovidedbyanexternalsupplier.Assesstheprocesscapabilityforthissupplier.ThedataisavailableinProcessCapabilityAnalysis.MTW.Example3StatQualityToolsCapabilityAnalysis(Normal)Example3Example3AHistogramofcamshaftlengthsuggestsmixedpopulations.Furtherinvestigationrevealedthattherearetwosuppliersforthecamshaft.Datawascollectedovercamshaftsfrombothsources.Arethetwosupplierssimilarinperformance?Ifnot,whatareyourrecommendations?Example3AStatQualityToolsCapabilitySixpack(Normal)Example3AExample3AWhat’’sSixSigmaQuality——ThenOriginalDefinitionbyMotorola:ifthespecificationlimitsareatleast±±6awayfromtheprocessmean,i.e.Cp2,andtheprocessshiftsbylessthan1.5,i.e.Cpk1.5,thentheprocesswillyieldlessthan3.4dppmrejects.66Shift1.54.5What’’sSixSigmaQuality——NowMikelJHarryclaimsthattheprocessmeanbetweenlotswillvary,withanaverageprocessshiftof1.5.k=z+1.5k=z+1.5Shift1.5zNote:SigmaCapability=??(dpmo)?(dppm)ProcessCapabilityforNon-NormalDataNoteverymeasuredcharacteristicisnormallydistributed.CharacteristicDistributionCycleTimeExponentialRejectRate BinomialDefectRate PoissonProcessCapabilityforCycleTimeTheWeibullDistributionisageneralfamilyofdistributionwithwherescaleparameteristhevalueatwhichCDF=68.17%,andshapeparameterdeterminestheshapeofthePDF.ProcessCapabilityforCycleTimeAt=1,theWeibullDistributionisreducedtoForanExponentialDistribution,TheExponentialDistributionisthusaWeibullDistributionwith=1.Weibull(x;=1,)Exponential(x;)Example4Acustomerservicemanagerwantstodeterminetheprocesscapabilityforhisdepartment.Aprimaryperformanceindexisthetimetakentocloseacustomercomplaint.Thegoalforthisindexistocloseacomplaintwithinonecalendarweek.Performanceoverthelast400complaintswasreviewed.Example4StatQualityToolsCapabilityAnalysis(Weibull)Example4Example4AStatQualityToolsCapabilitySixpack(Weibull)Example4AProcessCapabilityforRejectRateForaNormalDistribution,theproportionofpartsproducedbeyondaspecificationlimitisRejectRateProcessCapabilityforRejectRateThus,foreveryrejectratethereisanaccompanyingZ-Score,whereRecallthatHenceProcessCapabilityforRejectRateEstimationofPpkforRejectRateDeterminethelong-termrejectrate(p)Determinetheinversecumulativeprobabilityforp,usingCalcProbabilityDistributionNormalZ-ScoreisthemagnitudeofthereturnedvaluePpkisone-thirdoftheZ-ScoreExample5Asalesmanagerplanstoassesstheprocesscapabilityofhistelephonesalesdepartment’shandlingofincomingcalls.Thefollowingdatawascollectedoveraperiodof20days:numberofincomingcallsperdaynumberofunansweredcallsperdaysExample5StatQualityToolsCapabilityAnalysis(Binomial)Example5Ppk=0.25ProcessCapabilityforDefectRateOtherapplications,approximatingaPoissonDistribution:errorratesparticlecountchemicalconcentrationProcessCapabilityforDefectRateEstimationofYtpforDefectRateDefinesizeofaninspectionunitDeterminethelong-termdefectsperunit(DPU)DPU=TotalDefectsTDeterminethethroughputyield(Ytp) Ytp =exp{–DPU}ProcessCapabilityforDefectRateEstimationofSigma-CapabilityforDefectRateDeterminetheopportunitiesperunitDeterminethelong-termdefectsperopportunity(d)d=defectsperunitopportunitiesperunitDeterminetheinversecumulativeprobabilityford,usingCalcProbabilityDistributionNormalZ-ScoreisthemagnitudeofthereturnedvalueSigma-Capability=Z-Score+1.5Example6Theprocessmanagerforawiremanufacturerisconcernedabouttheeffectivenessofthewireinsulationprocess.Randomlengthsofelectricalwiringaretakenandtestedforweakspotsintheirinsulationbymeansofatestvoltage.Thenumberofweakspotsandthelengthofeachpieceofwirearerecorded.Example6StatQualityToolsCapabilityAnalysis(Poisson)Example6DefectsperUnit=0.0265194ThroughputYield=exp{––DPU}=exp{––0.0265194}=0.9738c.f.First-TimeYield=2/100=0.02Example6Define1InspectionUnit=125unitlengthofwirei.e.Units=Length125Example6AStatQualityToolsCapabilityAnalysis(Poisson)Example6ADefectsperUnit=3.31493ThroughputYield=exp{––DPU}=exp{––3.31493}=0.0363c.f.First-TimeYield=2/100=0.02Example6BDefectsperUnit=3.31493OpportunitiesperUnit=1DefectsperOpportunity=3.31493Z-Score=???Example6B1inspectionunit=1unitlengthofwireOpportunitiesperUnit=1DefectsperOpportunity=32912,406=0.0265Z-Score=Abs{–1(0.0265)}=1.935Sigma-Capability=Z-Score+1.5=3.435DPUZ-ScoresChoiceofSixSigmaMetric9、靜夜四無鄰鄰,荒居舊業(yè)業(yè)貧。。12月-2212月-22Thursday,December8,202210、雨雨中中黃黃葉葉樹樹,,燈燈下下白白頭頭人人。。。。00:32:1400:32:1400:3212/8/202212:32:14AM11、以以我我獨獨沈沈久久,,愧愧君君相相見見頻頻。。。。12月月-2200:32:1400:32Dec-2208-Dec-2212、故故人人江江海海別別,,幾幾度度隔隔山山川川。。。。00:32:1400:32:1400:32Thursday,December8,202213、乍乍見見翻翻疑疑夢夢,,相相悲悲各各問問年年。。。。12月月-2212月月-2200:32:1400:32:14December8,202214、他鄉(xiāng)生白白發(fā),舊國國見青山。。。08十二二月202212:32:14上上午00:32:1412月-2215、比不了得得就不比,,得不到的的就不要。。。。十二月2212:32上午12月-2200:32December8,202216、行動動出成成果,,工作作出財財富。。。2022/12/80:32:1400:32:1408December202217、做前,能能夠環(huán)視四四周;做時時,你只能能或者最好好沿著以腳腳為起點的的射線向前前。。12:32:14上上午12:32上午00:32:1412月-229、沒有失敗,,只有暫時停停止成功!。。12月-2212月-22Thursday,December8,202210、很很多多事事情情努努力力了了未未必必有有結結果果,,但但是是不不努努力力卻卻什什么么改改變變也也沒沒有有。。。。00:32:1400:32:1400:3212/8/202212:32:14AM11、成功就就是日復復一日那那一點點點小小努努力的積積累。。。12月-2200:32:1400:32Dec-2208-Dec-2212、世間成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論