2017屆(理)人教版A版集合檢測卷_第1頁
2017屆(理)人教版A版集合檢測卷_第2頁
2017屆(理)人教版A版集合檢測卷_第3頁
2017屆(理)人教版A版集合檢測卷_第4頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

A組考點能力演練1.集合U={0,1,2,3,4},A={1,2},B={x∈Z|x2-5x+4<0},則?U(A∪B)=()A.{0,1,3,4} B.{1,2,3}C.{0,4} D.{0}解析:因為集合B={x∈Z|x2-5x+4<0}={2,3},所以A∪B={1,2,3},又全集U={0,1,2,3,4},所以?U(A∪B)={0,4}.所以選C.答案:C2.已知集合A={0,1,2,3,4},B={x|x=eq\r(n),n∈A},則A∩B的真子集個數(shù)為()A.5 B.6C.7 D.8解析:由題意,得B={0,1,eq\r(2),eq\r(3),2},所以A∩B={0,1,2},所以A∩B的真子集個數(shù)為23-1=7,故選C.答案:C3.(2015·太原一模)已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},則陰影部分表示的集合是()A.[-1,1)B.(-3,1]C.(-∞,-3)∪[-1,+∞)D.(-3,-1)解析:由題意可知,M=eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(-3<x<1)))),N=eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(-1≤x≤1)))),∴陰影部分表示的集合為M∩(?UN)=eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(-3<x<-1)))).答案:D4.集合A={x|x-2<0},B={x|x<a},若A∩B=A,則實數(shù)a的取值范圍是()A.(-∞,-2] B.[-2,+∞)C.(-∞,2] D.[2,+∞)解析:由題意,得A={x|x<2}.又因為A∩B=A,所以a≥2,故選D.答案:D5.(2015·山西質(zhì)檢)集合A,B滿足A∪B={1,2},則不同的有序集合對(A,B)共有()A.4個 B.7個C.8個 D.9個解析:由題意可按集合A中的元素個數(shù)分類.易知集合{1,2}的子集有4個:?,{1},{2},{1,2}.若A=?,則B={1,2};若A={1},則B={2}或B={1,2};若A={2},則B={1}或B={1,2};若A={1,2};則B=?或B={1}或B={2}或B={1,2}.綜上所述,不同的有序集合對(A,B)共有9個,故選D.答案:D6.(2015·廣州模擬)設(shè)集合A={(x,y)|2x+y=6},B={(x,y)|3x+2y=4},滿足C?(A∩B)的集合C的個數(shù)為________.解析:依題意得,A∩B={(8,-10)},因此滿足C?(A∩B)的集合C的個數(shù)是2.答案:27.設(shè)集合Sn={1,2,3,…,n},若X?Sn,把X的所有元素的乘積稱為X的容量(若X中只有一個元素,則該元素的數(shù)值即為它的容量,規(guī)定空集的容量為0).若X的容量為奇(偶)數(shù),則稱X為Sn的奇(偶)子集,則S4的所有奇子集的容量之和為________.解析:∵S4={1,2,3,4},∴X=?,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的為X={1},{3},{1,3},其容量分別為1,3,3,所以S4的所有奇子集的容量之和為7.答案:78.已知集合P={-1,m},Q=eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(-1<x<\f(3,4))))),若P∩Q≠?,則整數(shù)m=________.解析:由{-1,m}∩eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(-1<x<\f(3,4)))))≠?,可得-1<m<eq\f(3,4),由此可得整數(shù)m=0.答案:09.已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求實數(shù)m的值;(2)若A??RB,求實數(shù)m的取值范圍.解:由已知得A={x|-1≤x≤3},B={x|m-2≤x≤m+2}.(1)∵A∩B=[0,3],∴eq\b\lc\{\rc\(\a\vs4\al\co1(m-2=0,,m+2≥3.))∴m=2.(2)?RB={x|x<m-2或x>m+2},∴A??RB,∴m-2>3或m+2<-1,即m>5或m<-3.因此實數(shù)m的取值范圍是{m|m>5或m<-3}.10.設(shè)全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.(1)求(?IM)∩N;(2)記集合A=(?IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求實數(shù)a的取值范圍.解:(1)∵M={x|(x+3)2≤0}={-3},N={x|x2+x-6=0}={-3,2},∴?IM={x|x∈R且x≠-3},∴(?IM)∩N={2}.(2)由(1)知A=(?IM)∩N={2},∵A∪B=A,∴B?A,∴B=?或B={2},當B=?時,a-1>5-a,∴a>3;當B={2}時,eq\b\lc\{\rc\(\a\vs4\al\co1(a-1=2,,5-a=2,))解得a=3,綜上所述,實數(shù)a的取值范圍為{a|a≥3}.B組高考題型專練1.(2014·高考課標全國卷Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},則A∩B=()A.[-2,-1] B.[-1,2)C.[-1,1] D.[1,2)解析:由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故選A.答案:A2.(2014·高考課標全國卷Ⅱ)設(shè)集合M={0,1,2},N={x|x2-3x+2≤0},則M∩N=()A.{1} B.{2}C.{0,1} D.{1,2}解析:由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故選D.答案:D3.(2015·高考全國卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},則集合A∩B中元素的個數(shù)為()A.5 B.4C.3 D.2解析:集合A={x|x=3n+2,n∈N},當n=0時,3n+2=2,當n=1時,3n+2=5,當n=2時,3n+2=8,當n=3時,3n+2=11,當n=4時,3n+2=14,∵B={6,8,10,12,14},∴A∩B中元素的個數(shù)為2,選D.答案:D4.(2015·高考福建卷)若集合A={i,i2,i3,i4}(i是虛數(shù)單位),B={1,-1},則A∩B等于()A.{-1} B.{1}C.{1,-1} D.?解析:因為A={i,-1,-i,1},B={1,-1},所以A∩B={1,-1},故選C.答案:C5.(2015·高考浙江卷)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},則(?RP)∩Q=(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論