文稿成果投資閱讀us_第1頁
文稿成果投資閱讀us_第2頁
文稿成果投資閱讀us_第3頁
文稿成果投資閱讀us_第4頁
文稿成果投資閱讀us_第5頁
已閱讀5頁,還剩149頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

UnitedStatesEquityUnitedStatesEquityRISKMHANDBOOKregardingtheUnitedStatesEquityRiskMorregardingtheUnitedStatesEquityRiskMoranyresultstobeobtainedfromtheuseoftheUnitedStatesEquityRiskM.BARRAEXPRESSLYDISCLAIMSALLWARRORIMPLIED,UNITEDSTATESEQUITYRISKMESOFMERCHANTABILITYANDFITNESSFORAPARTICULARPURPOSEORUSEORTHEIREQUIVALENTSUNDERTHELAWSOFANYJURISDICTION.AlthoughBARRAintendstoobtaininformationanddatafromsourcesitconsiderstobereasonablyreliable,theaccuracyandcompletenessofsuchinformationanddataarenotguaranteedandBARRAwillnotbesubjecttoliabilityforanyerrorsoromissionstherein.Accordingly,suchinformationanddata,theUnitedStatesEquityRiskMM,andtheiroutputarenotwarrantedtobefromerror.BARRAdoesnotwarrantthattheUnitedStatesEquityRiskbefromunauthorizedhiddenprogramsintroducedintotheUnitedStatesEquityRiskMwithoutBARRA'sknowledge.CopyrightBARRA,Inc.1998.0111O02/98.ContentsAboutBARRA 1Apioneerinriskmanagement 1Introduction 3InthisContentsAboutBARRA 1Apioneerinriskmanagement 1Introduction 3Inthishandbook 3Furtherreferences 5Books 5SectionI:Theory1.WhyRiskisImportant 7Thegoalofriskanalysis 82.DefiningRisk 11Somebasicdefinitions 11Riskmeasurement 13Anexample 13Riskreductionthroughdiversification 14Drawbacksofsimpleriskcalculations 16Evolutionofconcepts 163.MingandForecastingRisk 21WhatareMFMs? 21HowdoMFMswork? 21AdvantagesofMFMs 22AsimpleMFM 23Mmathematics 25RiskpredictionwithMFMs 26i4.ModernPortfolioManagementandRisk 31Portfoliomanagement—twotypes 31Passivemanagement 31Activemanagement 32Decomposingrisk 34TotalRisk 34Systematic-ResidualRisk4.ModernPortfolioManagementandRisk 31Portfoliomanagement—twotypes 31Passivemanagement 31Activemanagement 32Decomposingrisk 34TotalRisk 34Systematic-ResidualRiskDecomposition 35ActiveRiskDecomposition 36ActiveSystematic-ActiveResidualRiskDecomposition 37Summaryofriskdecomposition 38Performanceattribution 38Summary 395.BARRAMultiple-FactorMing 41Overview 41Descriptorselectionandtesting 44Descriptorstandardization 44Riskindexformulation 45Industryallocation 45Factorreturnestimation 46Covariancematrixcalculation 46Exponentialweighting 47Computingmarketvolatility:ExtendedGARCHms 48Specificriskming 49Overview 49Methodology 50MMingtheaveragelevelofspecificrisk 50ingtherelativelevelofspecificrisk 51Estimatingthescalingcoefficients 52Finalspecificriskforecast 52Updatingthem.....................................52Comparisonofriskmfeatures 53iiU.S.EquityMVersion3(E3)SectionII:US-E3ModelSectionII:US-E3ModelDetails6.AdvantagesofUS-E3OverUS-E2 55Overview 55Industries 56Reclassification 56Flexibleindustries 57Increasedsizeoftheestimationuniverse 57Riskindices 58SizeNonlinearityfactor 58Leverage 58Simplervolatilitycalculation 58EliminationofUS-E2’sLaborIntensityandForeignIncome 59Improvedindependencebetweenriskindices 59Riskforecasting 59ImprovedGARCHmodel 59Specificriskmodel 60Modelfit-relatedissues 60Factorreturnestimation 60Ongoingdiagnostics 60Scheduledrefittingofmodelparameters 60Assetclassissues 61REITs 61Comingsoon 617.TheUS-E3EstimationUniverse 63Overview 63Selectionprocess 63S&P500membership 64Compustatdatapresent 64Capitalization 64Minimumprice 64Industryfill-in 64Grandfathering. 65ComparisonwiththeUS-E2estimationuniverse 65Contentsiii8.US-E3RiskIndicesandDescriptors 67DifferencesbetweenUS-E2and8.US-E3RiskIndicesandDescriptors 67DifferencesbetweenUS-E2andUS-E3riskindices 67Generaldifferences 67Specificdifferences 67Volatility 67Size 68SizeNonlinearity(US-E3) 68Growth 68FinalLeverage(US-E2)andLeverage(US-E3) 69ForeignIncome(US-E2)andCurrencySensitivity(US-E3) 69LaborIntensity(US-E2) 69US-E3andUS-E2riskindicesataglance 70Riskindexdefinitions 74Volatility 74Momentum 74Size 74SizeNonlinearity 74TradingActivity 74Growth 75EarningsYield 75Value 75EarningsVariability 75Leverage 75CurrencySensitivity 75DividendYield 75Non-EstimationUniverseIndicator 76Descriptordefinitions 769.US-E3Industries 77Overview 77Industryclassificationscheme 77Mini-industriesandindustries 77Sectors 78Industryweights 791.Thevaluationms 792.Assetindustryweightsforeachm...............79ivU.S.EquityMVersion3(E3)3.Finalweights 80Historicalassignmentofindustryandweights 80Ongoingassignmentofindustryandweights 80Industryevolution 81Sectormap3.Finalweights 80Historicalassignmentofindustryandweights 80Ongoingassignmentofindustryandweights 80Industryevolution 81SectormapofUS-E3industries 8210.FactorReturnEstimation 85Overview 85Estimations 85GLSweights 86Factorreturnsforhistoric“newborn”industries 86TheNONESTUfactorreturn 86Testing 8711.EstimatingtheFactorCovarianceMatrixinUS-E3 89Overview 8912.US-E3SpecificRiskMing 91Overview 91AppendixA:US-E3DescriptorDefinitions 93Volatility 93Momentum 95Size 96SizeNonlinearity 96TradingActivity 96Growth 98EarningsYield 100Value 101EarningsVariability 101Leverage 102CurrencySensitivity 103DividendYield 104Non-EstimationUniverseIndicator 104ContentsvAppendixB:US-E3Industries,Mini-Industries,ExampleAppendixB:US-E3Industries,Mini-Industries,ExampleCompanies,andCodes 105AppendixC:US-E3FrequencyDistributionsforPredictedBeta,SpecificRisk,RiskIndices 115Predictedbeta 115Specificrisk 115Riskindices 116AppendixD:US-E3RiskIndexFactorReturns 121Glossary 127Index 137Contributors143viU.S.EquityMVersion3(E3)AboutBARRAInrecentyearstheinvestmentmanagementindustryhasadjustedtocontinuingchanges—theoreticaladvances,technologicaldevelop-ments,andmarketgrowth.Toaddressthesechallenges,investmentAboutBARRAInrecentyearstheinvestmentmanagementindustryhasadjustedtocontinuingchanges—theoreticaladvances,technologicaldevelop-ments,andmarketgrowth.Toaddressthesechallenges,investmentmanagersandfinalinstitutionsrequirethemostadvancedandpowerfulanalyticaltoolsavailable.ApioneerinriskmanagementAstheleadingproviderofglobalinvestmentdecisiontools,BARRAhasrespondedtotheseindustrychangesbyprovidingqutativeproductsandservicesthatarebothflexibleandefficient.Sinceourfoundingin1975,BARRAhasbeenaleaderinmodernfinresearchandtechniques.alInitially,ourservicesfocusedonriskanalysisinequitymarkets.OurU.S.EquityMsetastandardofaccuracythatBARRAcontinuestofollow.BARRAusesthebestdataavailabletodevelopeconomet-ricfinalms.Inturn,thesemsarethebasisofsoftwareproductsdesignedtoenhanceportfolioperformancethroughreturnsforecasting,riskanalysis,portfolioconstruction,tran costanalysis,andhistoricalperformanceattribution.In1979,BARRAexpandedintothefixedincomeareawiththereleaseofU.S.bondvaluationandriskms.Inthemid-1980swedevelopedaglobaltacticalassetallocationsystem:TheBARRAWorldMarketsM .Morerecently,theTotalPlanRiskapproachwasdevelopedtoprovidemulti-asset-classvalue-at-risk(VAR)analyses.BARRAnowhasofficesaroundtheworldandproductsthatcovermostoftheworld’stradedsecurities.By1997,ourscomprisedapproximately1,200finalinstitutionsworldwidemanagingover$7trillioninassets.TheyrelyonBARRA’sinvestmenttechnologyandconsultingservicestostrengthentheirfininvestmentdecision-making.alanalysisand12U.S.Equity2U.S.EquityMVersion3(E3)IntroductionInthishandbookSectionI:Theorycontainsageneraldiscussionofequityriskandreturn,andthemethodsBARRAusestomters1through5compriseIntroductionInthishandbookSectionI:Theorycontainsageneraldiscussionofequityriskandreturn,andthemethodsBARRAusestomters1through5comprisethissection.portfoliorisk.Chap-Chapter1.WhyRiskisImportantgivesanoverviewofwhyfinprofessionalsshouldcareaboutrisk.alChapter2.DefiningRiskoutlinesthebasicstatisticalconceptsunder-lyingriskanalysis,andtracesthehistoryofequityrisktheory.Chapter3.M ingandForecastingRiskdiscussestheapplicationofmultiple-factormlem.ing(MFM)totheequityriskanalysisprob-Chapter4.ModernPortfolioManagementandRiskrelatesthevari-oustypesofactiveandpassiveequitymanagementtotheuseofariskm.stheprocessofChapter5.BARRAMultiple-FactorMingcreatingandmaintainingaBARRAequityMFM.sdiscussestheconstructionofourSectionII:US-E3Mthird-generationU.S.equityriskmindepth.Chapters6through12andAppendicesAthroughDcomprisethissection.Chapter6.AdvantagesofUS-E3OverUS-E2summarizesthereasonsforupdatingUS-E2andtheparticularadvancesoverUS-E2.withUS-E3Chapter7.TheUS-E3EstimationUniversediscussestheexpansionoftheUS-E3equityportfoliowhichisusedtoestimatethemainparam-etersoftheriskm.Thiswasdonetoensureamoreaccuratereflectionoftheinvestingactivitiesofours.Chapter8.US-E3RiskIndicesandDescriptorsdescribesdifferencesfromtheUS-E2treatmentofthesefactorsandimprovementsthathavebeeninthispartofthem.Chapter9.US-E3Industriesdiscussesthecompletereclassificationoftheindustryassignmentsandotherenhancementsintendedtokeep3themodelcurrentovertime.Onethemodelcurrentovertime.OneoftheleastsatisfactoryaspectsofUS-E2wastheunchangingnatureoftheindustryfactorspecification.Chapter10.FactorReturnEstimationcontainsabriefdescriptionofUS-E3’sparticularimplementationofthisprocess.AmoregeneraldiscussioniscontainedinChapter5.Chapter11.EstimatingtheFactorCovarianceMatrixinUS-E3alsobrieflydiscussesonlythoseaspectsofthissubjectwhichareparticu-lartoUS-E3,withamoregeneraltreatmentdetailedinChapter5.Chapter12.US-E3SpecificRiskModelingalsobrieflydiscussesonlythoseaspectsofthissubjectwhichareparticulartoUS-E3,withamoregeneraltreatmentdetailedinChapter5.AppendixA:US-E3DescriptorDefinitionsisthecompletelistofriskindicesandtheirunderlyingdatadescriptors.AppendixB:US-E3Industries,Mini-Industries,ExampleCompanies,andCodescontainsthecompletelistofindustries,theirconstituent“mini-industries,”andselectedexamplecompanies.AppendixC:US-E3FrequencyDistributionsforPredictedBeta,Spe-cificRisk,RiskIndicescontainsgraphicaldepictionsofthedistribu-tionofthesemodeloutputs.AppendixD:US-E3RiskIndexFactorReturnsgivesafullmodelhis-toryofthereturnstotheUS-E3riskindices.Finally,theGlossaryandIndexareusefulresourcesforclarifyingter-minologyandenhancingthehandbook’susefulness.4U.S.EquityModelVersion3(E3)BARRAhasacompalsBARRAhasacompalsdescribingthemensivecollectionofarticlesandothermateri-sandtheirapplications.Tolearnmoreaboutthetopicscontainedinthishandbook,consultthefollowingreferencesorourextensivePublicationsBibliography,whichisavailablefromBARRAofficesandfromourWebsiteat.BooksAndrewRuddandHenryK.Clasing,ModernPortfolioTheory:ThePrinciplesofInvestmentManagement,Orinda,CA,AndrewRudd,1988.RichardC.GrinoldandRonaldN.Kahn:ActivePortfolioManage-ment:Qu tativeTheoryandApplications,ProbusPublishing,Chi-cago,IL,1995.Introduction56U.S.Equity6U.S.EquityMVersion3(E3)1.WhyRiskisImportantSuperiorinvestmentperformanceistheproductofcarefulattentionto1.WhyRiskisImportantSuperiorinvestmentperformanceistheproductofcarefulattentiontofourelements:forreasonablereturnexpectationscontrollingrisksothatthepursuitofopportunitiesremainstem-peredbyprudencecontrollingcostssothatinvestmentprofitsarenotdissipatedinexcessiveorinefficienttradingcontrollingandmonitoringthetotalinvestmentprocesstomain-tainaconsistentinvestmentprogramThesefourelementsarepresentinanyinvestmentmanagementproblem,beitastrategicassetallocationdecision,anactivelyman-agedportfolio,oranindexfund—managedbottom-uportop-down,viatraditionalorqutativemethods.Figure1-1ThePerformancePyramidSuperiorPerformanceReturnForecastsProcessControlRiskControlCostControlInasimplerview,returnandriskaretheprotagonistandantagonistofinvesting.Accordingtoanoldadage,thetradeoffbetweenreturnandriskisthetradeoffbetweeneatingwellandsleeClearly,riskdoesn’tjustmattertoquants!well.7Ignoringriskishazardoustoyourportfolio.TheoptimalstrategyignoringriskplacestheIgnoringriskishazardoustoyourportfolio.Theoptimalstrategyignoringriskplacestheentireportfolioinonestock.Butnoinstitu-tionalinvestorfollowsthisstrategy.Henceriskconsiderationsmustimpacteveryinstitutionalportfolio.Unfortunately,theysometimesdonotimpactthemenough.Weneednotlookfartofindexamplesoffinaldisastersthatarosethroughlackofsufficientriskcontrol.ThedebaclesofOrangeCounty,BaringsBank,andthePiperJaffrayInstitutionalGovern-mentIncomeFundalltestifytothedangersofignoringorpoorlyunderstandingrisk.Butriskanalysisismorethanavoidingdisasters—itcaninfactenhanceopportunities.PeterBernsteinhasarguedthatalackofunderstandingofriskholdsbackeconomicdevelopment.1Moderneconomicgrowthrequiresunderstandingrisk.Whataretheexpectedreturnstoanewventure?Whataretherisks?Dothereturnsoutweightherisks?CanIhedgetherisks?Inmoderneconomies,thefutureisnotbeyondmanagement,notsimplysubjecttothewhimsofmanygods.Infact,theperiodwhichmarkedthedevelopmentofprobabilityandstatistics(duringandaftertheRenaissance)alsomarkedatimeofprofoundgrowthintrade,explo-ration,andwealth.Theideasofriskmanagementenabledthemod-erneconomicworld,accordingtoBernstein.Riskanalysisenhancedopportunities.WhileBernstein’sargumentmayseeminspiring—thoughnotofday-to-dayrelevance—infactthegoalofriskanalysisisnottominimizeriskbuttoproperlyweighrisksisleadstotakingmorerisk.return.Sometimesriskanaly-ThegoalofriskanalysisRiskisimportant.Itisacriticalelementofsuperiorinvestmentper-formance.Goodriskanalysisshouldprovidenotonlyanumber—aquficationofrisk—butinsight,especiallyinsightintothe“Perfor-mancePyramid.”Wehaveillustratedsuperiorperformanceasathree-dimensionalobject.Asinglerisknumberisonlyone-dimensional.Sowhatdowemeanbyinsight?1.SeePeterL.Bernstein,theGods:TheRemarkableStoryofRisk,JohnWiley&Sons,NewYork,1996.8U.S.EquityMVersion3(E3)RiskanalysisshoulduncovernotjustoverallRiskanalysisshoulduncovernotjustoverallrisk,butthelargestandsmallestbetsintheportfolio.Dothelargestbetscorrespondtothehighestexpectedreturns?Theyshould.Iftheydonot,theportfolioisn’tproperlybalngreturnandrisk.Arethebetstoolargeortoosmall?Whatisthe“worstcase”scenario?Howwilltheportfoliocomparetoitsbenchmark?Robustriskanalysiscanprovideanswerstoallthesequestionsaswellasinsighttoallinvestors.Inthisvolumewewilldiscussthehis-toryandcurrentpracticeofequityriskmingforsinglecountrymarkets.Othermethodsareusedfordifferentsecurities,suchasbondsorcurrencies,andfordifferentmarketstructures,suchastheglobalstockmarket.Theunderlyingmessageisclear:Theinvestorarmedwithsuperiormethodsofassessingandcontrollingriskpos-sessesasignificantcompetitiveedgeinmoderncapitalmarkets.1.WhyRiskisImportant910U.S.Equity10U.S.EquityMVersion3(E3)2.DefiningRiskdefinitionsInanuncertaininvestmentenvironment,investorsbearrisk.2.DefiningRiskdefinitionsInanuncertaininvestmentenvironment,investorsbearrisk.Riskisdefinedasthetotaldispersionorvolatilityofreturnsforasecurityorportfolio.Further,riskreflectsuncertaintyaboutthefuture.Wewilldefineriskasthestandarddeviationofthereturn.Riskisanabstractconcept.Aneconomistconsidersrisktobeexpressedina’spreferences.Whatisperceivedasriskyforoneindividualmaynotberiskyforanother.1Weneedanoperationalandthereforeuniversalandimaldefi-nitionofrisk.Institutionalmoneymanagersareagentsofpensionfundtrusteesandotherassetsponsors,whoarethemselvesagentsofthesponsoringorganizationand,ultimately,thebeneficiariesofthefund.Inthatsettingwecannothopetohaveaalviewofrisk.Weneedasymmetricviewofrisk.Institutionalmoneymanagersarejudgedrelativetoabenchmarkorrelativetotheirpeers.Themoneymanagersuffersasmuchifhedoesnotholdastockanditgoesupasifheheldalargerthadown.ageamountofthestockanditgoesWeneedaflexibledefinitionofrisk.Ourdefinitionofriskshouldapplytoindividualstocksandtoportfolios.Weshouldbeabletotalkaboutrealizedriskinthepast,andforecastriskoveranyfuturehorizon.Thedefinitionofriskthatmeetsthesecriteriaofbeinguniversal,symmetric,andflexibleisthestandarddeviationofreturn.2,3IfRPisaportfolio’stotalreturn,thentheportfolio’sstandarddeviationofThereisavastliteratureonthissubject.ThebooksofArrow,Raiffa,andBorchareagoodintroduction.Aneconomistwouldcallthestandarddeviationameasureofuncer-taintyratherthanrisk.Thereissomethingofadebatecurrentlyoverusingmeasuresof“downside”riskinsteadofvolatility.Giventhesymmetricnatureofac-tivereturns,U.S.institutionalinvestors’avoidanceofstrategieslikeportfolioinsurancewhichskewportfolioreturns,andthepracticallim-itationsofanalyzinglargeportfolios(>100names),downsideriskisin-appropriateorirrelevantforactivemanagement.Foradiscussion,seeRonaldKahnandDanStefek,“Heat,Light,andDownsideRisk,”1997.11StdP.Aportfolio’sexcessStdP.Aportfolio’sexcesseturnPreturnisdenotedbyPdiffersfromthetotalreturnRPbyaconstantRF,sotheriskoftheexcessreturnisequaltotheriskofthetotalreturn.Wewilltypicallyquotethisrisk,orstandarddeviationofreturn,onapercentperyearbasis.Wewillalsooccasionallyrefertothisqu tyasvolatility.1Theroughinterpretationofstandarddeviationisthatthereturnwillbewithinonestandarddeviationofitsexpectedvaluetwo-thirdsofthetimeandwithintwostandarddeviationsnineteentimesoutoftwenty.Figure2-1graphicallyillustratesthisfact.Figure2-1Risk:TheDispersionofReturnsThestandarddeviationisastatisticalmeasureofdispersionaroundanexpectedvalue—inthiscase,zero.1.Foramoreeddiscussionoftheseconcepts,pleaseseeRichardC.GrinoldandRonaldN.Kahn,ActivePortfolioManagement:Qu-tativeTheoryandApplications,ProbusPublishing,Chicago,IL,1995.12U.S.EquityMVersion3(E3)ExpectedValue–1Std.Dev. +1Std.Dev.-2% 0 2%1outof6yrs. 2outof3yrs. 1outof6yrs.RiskmeasurementArelatedriskmeasureisvariance,thestandarddeviationsquared.Theformulaeare:RiskmeasurementArelatedriskmeasureisvariance,thestandarddeviationsquared.Theformulaeare:Va??r2where:=return,=expectedormeanreturn,rStdxVarxEx=standarddeviationofx,=varianceofx,and=expectedvalueofx.Thestandarddeviationisthemorecommonriskindicatorsinceitismeasuredinthesameunitsasreturn.Ofcourse,ifthestandarddeviationisknown,thevariancecanbeeasilycomputedandviceversa.Othermeasures,includingvalue-at-riskandshortfallrisk,canbeeasilycomputedfromthestandarddeviation.AnexampleThestandarddeviationhassomeinterestingcharacteristics.Inpar-ticularitdoesnothavetheportfolioproperty.Thestandarddevia-tionofastockportfolioisnottheweightedaverageofthestandarddeviationsofthecomponentstocks.Forexample,supposethecorrelationbetweenthereturnsofStocks1and2is2,then:12.Ifwehaveaportfolioof50%Stock1and50%Stock0.5120.52220.510.5212PandP0.510.522.DefiningRisk13withsuchequalitybeingmaintainedonlyifthetwostocksareper-fectlycorrelated(12=1).Forrisk,thewholeislessthanwithsuchequalitybeingmaintainedonlyifthetwostocksareper-fectlycorrelated(12=1).Forrisk,thewholeislessthanthesumofitsparts.Thisisthekeytoportfoliodiversification.Figure2-2RiskReductionBenefitsofDiversification:ATwo-StockExampleFigure2-2showsasimpleexample.TheriskofaportfolioupfromandGeneralElectricisplottedthefractionofGEstockintheportfolio.Thecurvedlinerepresentstheriskoftheportfolio;thestraightlinerepresentstheriskthatwewouldobtainifthereturnsonandGEwereperfectlycorrelated.TheriskofGEis27.4%peryear;theriskofis29.7%peryear;andthetworeturnsare62.9%correlated.Thedifferencebetweenthetwolinesisanindicationofthebenefitofdiversificationinreducingrisk.RiskreductionthroughdiversificationWecanseethepowerofdiversificationinanotherexample.GivenaportfolioofNstocks,eachwithriskanduncorrelatedreturns,theriskofanequal-weightedportfolioofthesestockswillbe:N PNotethattheaverageriskis,whiletheportfolioriskisN.14U.S.EquityMVersion3(E3)Risk0.3000.2950.2900.2850.2800.2750.2700.2650.2600.2550% 25% 50% 75% 100%GEHolding62.9%correlated 100%correlatedForamoreusefulinsightintodiversification,assumenowthatthecorrelationbetweenthereturnsofallpairsofstocksisequalto.Thentheriskofanequallyweightedportfoliois:1N1N Foramoreusefulinsightintodiversification,assumenowthatthecorrelationbetweenthereturnsofallpairsofstocksisequalto.Thentheriskofanequallyweightedportfoliois:1N1N PInthelimitthattheportfoliocontainsaverylargenumberofcorre-latedstocks,thisbecomes:PTogetafeelforthis,considertheexampleofanequal-weightedportfolioofthe20MajorMarketIndexconstituentstocks.InDecember1992,thesestockshadaageriskof27.8%,whiletheequal-weightedportfoliohasariskof20.4%.1Equation2-6thenimpliesaagecorrelationbetweenthesestocksof0.52.Risksdon’taddacrossstocksandrisksdon’taddacrosstime.How-ever,variancewilladdacrosstimeifthereturnsinoneintervaloftimeareuncorrelatedwiththereturnsinotherintervalsoftime.Theassumptionisthatreturnsareuncorrelatedfromperiodtoperiod.Thecorrelationofreturnsacrosstime(calledautocorrela-tion)istozeroformostassetclasses.Thismeansthatvarianceswillgrowwiththelengthoftheforecasthorizonandtheriskwillgrowwiththesquarerootoftheforecasthorizon.Thus,a5%annualactiveriskisequivalenttoa2.5%activeriskoverthefirstquarterora10%activeriskoverfouryears.Noticethatthevarianceoverthequarter,year,andfour-yearhorizon(6.25,25,and100)remainsproportionaltothelengthofthehorizon.Weusethisrelationshipeverytimewe“annualize”risk—i.e.,stan-dardizeourrisknumberstoanannualperiod.Ifweexaminemonthlyreturnstoastockandobserveamonthlyreturnstandarddeviationofmonthly,weconvertthistoannualriskaccordingto:annual 12monthly1.ThesearepredictedvolatilitiesfromBARRA’sU.S.EquityM.2.DefiningRisk15DrawbacksofsimpleriskcalculationsThemathematicalcalculationofriskusingstandarddeviationofreturnsDrawbacksofsimpleriskcalculationsThemathematicalcalculationofriskusingstandarddeviationofreturnsisthereforestraightforwardandcanbeextendedtoanynum-berofsecurities.However,thisapproachsuffersfromseveraldraw-backs:Estimatingarobustcovariancematrixofreturnsrequiresdataforasmanyperiodsaswehavesecuritiestoanalyze.Forlargemarkets,suchastheU.S.stockmarket,theselongreturnshisto-riesmaysimplynotbeavailable.■Estimationerrormayoccurinanyoneperiodduetospuriousassetcorrelationsthatareunlikelytorepeatinasystematicfash-ion.■Asimplecovariancematrixofreturnsofferslittleinthewayofeconomicanalysis.Inotherwords,itislargelya“blackbox”approachwithlittleintuitivebasisorforecastability.■Forallthesereasons,finaleconomistshavesoughtformanyyearstominvestmentriskinmorenuancedways.Wewillnowturntoabriefhistoryoftheseefforts.EvolutionofconceptsThedevelopmentofequityriskconceptshasevolvedfromthemod-estandunscientificguessworkofearlyinvestmenttheorytothequtools.tativeanalysisandtechnicalsophisticationofmodernfin alBeforethe1950s,therewasnoconceptofsystematic,ormarket-related,return.Returnwasariseinthevalueofastockandriskwasadropinthevalueofastock.Theinvestor’sprimaryinvestment“Buyastock.Ifitgoesup,sellit.Ifitgoesdown,don’tbuyit.”WillRogers,1931toolswereintuitionandinsightfulfinalanalysis.Portfolioselec-tionwassimplyanactofassemblingagroupof“good”stocks.16U.S.EquityMVersion3(E3)Figure2-3DiversificationandRiskAsaportfoliomanagerincreasesthenumberofstocksinaportfolio,residual—ornon-market-related—riskisFigure2-3DiversificationandRiskAsaportfoliomanagerincreasesthenumberofstocksinaportfolio,residual—ornon-market-related—riskisdiversi-fied.Marketriskisundiversifi-able.Finaltheoristsbecamemorescientificandstatisticalintheearly“Diversificationisgood.”HarryMarkowitz,19521950s.HarryMarkowitzwasthefirsttoqufyrisk(asstandarddeviation)anddiversification.Heshowedpreciselyhowtheriskoftheportfoliowaslessthantheriskofitscomponents.Inthelate1950s,BreimanandKellyderivedmathematicallytheperilofignor-ingrisk.Theyshowedthatastrategythatexplicitlyriskoutperformedallotherstrategiesinthelongrun.1edforWenowknowhowdiversificationaffectsriskexposures.Itaveragesfactor-relatedrisk,suchasindustryexposures,andsignificantlyreducessecurity-specificrisk.However,diversificationdoesnoteliminateallriskbecausestockstendtomoveupanddowntogetherwiththemarket.Therefore,systematic,ormarket,riskcannotbeeliminatedbydiversification.Figure2-3showsthebalancebetweenresidualriskandmarketriskchangingasthenumberofdifferentstocksinaportfoliorises.Atacertainportfoliosize,allresidualriskiseffectivelyremoved,leavingonlymarketrisk.Asinvestmentmanagersbecamemoreknowledgeable,therewasapushtoidentifytheconceptualbasisunderlyingtheconceptsofrisk,diversification,andreturns.TheCapitalAssetPricingM(CAPM)wasoneapproachthatdescribedtheequilibriumrelation-shipbetweenreturnandsystematicrisk.WilliamSharpeearnedtheNobelPrizeinEconomicsforhisdevelopmentoftheCAPM.1.See,forexample,LeoBreiman,“InvestmentPoliciesforExpandingBusinessesOptimalinaLong-RunSense,”NavalResearchLogisticsQuarterly,Vol.7,No.4,December1960,pp.647–651.2.DefiningRisk17RiskofPortfolio(Standar

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論